1
|
Severin D, Moreno C, Tran T, Wesselborg C, Shirley S, Contreras A, Kirkwood A, Golowasch J. Daily oscillations of neuronal membrane capacitance. Cell Rep 2024; 43:114744. [PMID: 39298314 PMCID: PMC11744780 DOI: 10.1016/j.celrep.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 07/18/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Capacitance of biological membranes is determined by the properties of the lipid portion of the membrane as well as the morphological features of a cell. In neurons, membrane capacitance is a determining factor of synaptic integration, action potential propagation speed, and firing frequency due to its direct effect on the membrane time constant. Besides slow changes associated with increased morphological complexity during postnatal maturation, neuronal membrane capacitance is considered a stable, non-regulated, and constant magnitude. Here we report that, in two excitatory neuronal cell types, pyramidal cells of the mouse primary visual cortex and granule cells of the hippocampus, the membrane capacitance significantly changes between the start and the end of a daily light-dark cycle. The changes are large, nearly 2-fold in magnitude in pyramidal cells, but are not observed in cortical parvalbumin-expressing inhibitory interneurons. Consistent with daily capacitance fluctuations, the time window for synaptic integration also changes in pyramidal cells.
Collapse
Affiliation(s)
- Daniel Severin
- Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Cristián Moreno
- Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Trinh Tran
- Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Christian Wesselborg
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sofia Shirley
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Altagracia Contreras
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Alfredo Kirkwood
- Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| | - Jorge Golowasch
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Chameh HM, Falby M, Movahed M, Arbabi K, Rich S, Zhang L, Lefebvre J, Tripathy SJ, De Pittà M, Valiante TA. Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue. Front Synaptic Neurosci 2023; 15:1250834. [PMID: 37860223 PMCID: PMC10584155 DOI: 10.3389/fnsyn.2023.1250834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Electrophysiological characterization of live human tissue from epilepsy patients has been performed for many decades. Although initially these studies sought to understand the biophysical and synaptic changes associated with human epilepsy, recently, it has become the mainstay for exploring the distinctive biophysical and synaptic features of human cell-types. Both epochs of these human cellular electrophysiological explorations have faced criticism. Early studies revealed that cortical pyramidal neurons obtained from individuals with epilepsy appeared to function "normally" in comparison to neurons from non-epilepsy controls or neurons from other species and thus there was little to gain from the study of human neurons from epilepsy patients. On the other hand, contemporary studies are often questioned for the "normalcy" of the recorded neurons since they are derived from epilepsy patients. In this review, we discuss our current understanding of the distinct biophysical features of human cortical neurons and glia obtained from tissue removed from patients with epilepsy and tumors. We then explore the concept of within cell-type diversity and its loss (i.e., "neural homogenization"). We introduce neural homogenization to help reconcile the epileptogenicity of seemingly "normal" human cortical cells and circuits. We propose that there should be continued efforts to study cortical tissue from epilepsy patients in the quest to understand what makes human cell-types "human".
Collapse
Affiliation(s)
- Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Madeleine Falby
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mandana Movahed
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Scott Rich
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liang Zhang
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Jérémie Lefebvre
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Maurizio De Pittà
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Taufik A. Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Naseri Kouzehgarani G, Kandel ME, Sakakura M, Dupaty JS, Popescu G, Gillette MU. Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells 2022; 11:2073. [PMID: 35805157 PMCID: PMC9265588 DOI: 10.3390/cells11132073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Masayoshi Sakakura
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Joshua S. Dupaty
- Department of Biomedical Engineering, Mercer University, Macon, GA 31207, USA;
| | - Gabriel Popescu
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
4
|
Armbruster M, Naskar S, Garcia JP, Sommer M, Kim E, Adam Y, Haydon PG, Boyden ES, Cohen AE, Dulla CG. Neuronal activity drives pathway-specific depolarization of peripheral astrocyte processes. Nat Neurosci 2022; 25:607-616. [PMID: 35484406 PMCID: PMC9988390 DOI: 10.1038/s41593-022-01049-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Astrocytes are glial cells that interact with neuronal synapses via their distal processes, where they remove glutamate and potassium (K+) from the extracellular space following neuronal activity. Astrocyte clearance of both glutamate and K+ is voltage dependent, but astrocyte membrane potential (Vm) is thought to be largely invariant. As a result, these voltage dependencies have not been considered relevant to astrocyte function. Using genetically encoded voltage indicators to enable the measurement of Vm at peripheral astrocyte processes (PAPs) in mice, we report large, rapid, focal and pathway-specific depolarizations in PAPs during neuronal activity. These activity-dependent astrocyte depolarizations are driven by action potential-mediated presynaptic K+ efflux and electrogenic glutamate transporters. We find that PAP depolarization inhibits astrocyte glutamate clearance during neuronal activity, enhancing neuronal activation by glutamate. This represents a novel class of subcellular astrocyte membrane dynamics and a new form of astrocyte-neuron interaction.
Collapse
Affiliation(s)
- Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Saptarnab Naskar
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jacqueline P Garcia
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.,Cell, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Elliot Kim
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Yoav Adam
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Pfeiffer P, Barreda Tomás FJ, Wu J, Schleimer JH, Vida I, Schreiber S. A dynamic clamp protocol to artificially modify cell capacitance. eLife 2022; 11:75517. [PMID: 35362411 PMCID: PMC9135398 DOI: 10.7554/elife.75517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.
Collapse
Affiliation(s)
- Paul Pfeiffer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Jiameng Wu
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Schreiber
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, Gyengesi E. Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Front Cell Neurosci 2020; 14:577912. [PMID: 33192323 PMCID: PMC7594524 DOI: 10.3389/fncel.2020.577912] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ingrid Wagnon
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ilaria Rossetti
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
7
|
Campos ACP, Kikuchi DS, Paschoa AFN, Kuroki MA, Fonoff ET, Hamani C, Pagano RL, Hernandes MS. Unraveling the Role of Astrocytes in Subthalamic Nucleus Deep Brain Stimulation in a Parkinson's Disease Rat Model. Cell Mol Neurobiol 2020; 40:939-954. [PMID: 31939008 PMCID: PMC7295825 DOI: 10.1007/s10571-019-00784-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Mayra Akemi Kuroki
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, 01308-060, Brazil
| | - Erich Talamoni Fonoff
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, 01246-903, Brazil
| | - Clement Hamani
- Sunnybrook Health Research Institute, Harquail Centre for Neuromodulation, Toronto, ON, M4N 3M5, Canada
| | - Rosana Lima Pagano
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, 01308-060, Brazil.
| | | |
Collapse
|
8
|
Beckner ME. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem Int 2020; 136:104727. [PMID: 32194142 DOI: 10.1016/j.neuint.2020.104727] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Glia use multiple mechanisms to mediate potassium fluxes that support neuronal function. In addition to changes in potassium levels within synapses, these ions are dynamically dispersed through the interstitial parenchyma, perivascular spaces, leptomeninges, cerebrospinal fluid, choroid plexus, blood, vitreous, and endolymph. Neural circuits drive diversity in the glia that buffer potassium and this is reciprocal. Glia mediate buffering of potassium locally at glial-neuronal interfaces and via widespread networked connections. Control of potassium levels in the central nervous system is mediated by mechanisms operating at various loci with complexity that is difficult to model. However, major components of networked glial buffering are known. The role that potassium buffering plays in homeostasis of the CNS underlies some pathologic phenomena. An overview of potassium fluxes in the CNS is relevant for understanding consequences of pathogenic sequence variants in genes that encode potassium buffering proteins. Potassium flows in the CNS are described as follows: K1, the coordinated potassium fluxes within the astrocytic cradle around the synapse; K2, temporary storage of potassium within astrocytic processes in proposed microdomains; K3, potassium fluxes between oligodendrocytes and astrocytes; K4, potassium fluxes between astrocytes; K5, astrocytic potassium flux mediation of neurovasular coupling; K6, CSF delivery of potassium to perivascular spaces with dispersion to interstitial fluid between astrocytic endfeet; K7, astrocytic delivery of potassium to CSF and K8, choroid plexus (modified glia) regulation of potassium at the blood-CSF barrier. Components, mainly potassium channels, transporters, connexins and modulators, and the pathogenic sequence variants of their genes with the associated diseases are described.
Collapse
Affiliation(s)
- Marie E Beckner
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
9
|
Yue Z, Freedman IG, Vincent P, Andrews JP, Micek C, Aksen M, Martin R, Zuckerman D, Perrenoud Q, Neske GT, Sieu LA, Bo X, Cardin JA, Blumenfeld H. Up and Down States of Cortical Neurons in Focal Limbic Seizures. Cereb Cortex 2019; 30:3074-3086. [PMID: 31800015 DOI: 10.1093/cercor/bhz295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2018] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Recent work suggests an important role for cortical-subcortical networks in seizure-related loss of consciousness. Temporal lobe seizures disrupt subcortical arousal systems, which may lead to depressed cortical function and loss of consciousness. Extracellular recordings show ictal neocortical slow waves at about 1 Hz, but it is not known whether these simply represent seizure propagation or alternatively deep sleep-like activity, which should include cortical neuronal Up and Down states. In this study, using in vivo whole-cell recordings in a rat model of focal limbic seizures, we directly examine the electrophysiological properties of cortical neurons during seizures and deep anesthesia. We found that during seizures, the membrane potential of frontal cortical secondary motor cortex layer 5 neurons fluctuates between Up and Down states, with decreased input resistance and increased firing rate in Up states when compared to Down states. Importantly, Up and Down states in seizures are not significantly different from those in deep anesthesia, in terms of membrane potential, oscillation frequency, firing rate, and input resistance. By demonstrating these fundamental similarities in cortical electrophysiology between deep anesthesia and seizures, our results support the idea that a state of decreased cortical arousal may contribute to mechanisms of loss of consciousness during seizures.
Collapse
Affiliation(s)
- Zongwei Yue
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Isaac G Freedman
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Peter Vincent
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - John P Andrews
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christopher Micek
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mark Aksen
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Reese Martin
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - David Zuckerman
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Quentin Perrenoud
- Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Garrett T Neske
- Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lim-Anna Sieu
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xiao Bo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jessica A Cardin
- Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Neuroscience Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Panagiotou M, Deboer T. Chronic high-caloric diet accentuates age-induced sleep alterations in mice. Behav Brain Res 2019; 362:131-139. [PMID: 30639608 DOI: 10.1016/j.bbr.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
Abstract
Obesity and sleep disturbances comprise major health problems which are likely interrelated. Diet-induced obesity in young mice has been demonstrated to lead towards an altered sleep homeostasis. In the current study, we investigated the effect of chronic (12 weeks) high-caloric diet (HCD, 45% fat) consumption on sleep and the sleep electroencephalogram (EEG) in young and older mice (6-month-old, n = 9; 18-month-old, n = 8 and 24-month-old, n = 4) and compared with age-matched controls on normal chow (n = 11, n = 9 and n = 9 respectively). Half of the 24-month-old mice did not cope well with HCD, therefore this group has a lower n and limited statistical power. We recorded EEG and the electromyogram for continuous 48-h and performed a 6-h sleep deprivation during the second day. In aged HCD fed mice (18 months old) compared to young, an aging effect was still evident, characterized by decreased waking and increased NREM sleep in the dark period, decreased REM sleep during the light period, as well as increased slow-wave-activity (SWA, EEG power in NREM sleep in 0.5-4.0 Hz). Additionally, aged HCD treated mice showed increased NREM sleep and decreased waking, compared to age-matched controls, denoting an enhanced aging phenotype in the sleep architecture. Notably, an overall increase was found in the slow component of SWA (0.5-2.5 Hz) in aged HCD fed mice compared to age-matched controls. Our data suggest that the effect of aging is the dominant variable irrespective of diet. However, a synergistic effect of aging and diet is noted indicating that chronic HCD consumption exacerbates age-associated sleep alterations.
Collapse
Affiliation(s)
- M Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - T Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
11
|
Abstract
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA.
| |
Collapse
|
12
|
Wang J, Liu S, Lu B, Zeng Y. The role of relative membrane capacitance and time delay in cerebellar Purkinje cells. ACTA ACUST UNITED AC 2018; 62:529-536. [PMID: 27987351 DOI: 10.1515/bmt-2015-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/15/2022]
Abstract
The membrane capacitance of a neuron can influence the synaptic efficacy and the speed of electrical signal propagation. Exploring the role of membrane capacitance will help facilitate a deeper understanding of the electrical properties of neurons. Thus, in this paper, we investigated the neuronal firing behaviors of a two-compartment model in Purkinje cells. We evaluated the influence of membrane capacitance under two different circumstances: in the absence of time delay and in the presence of time delay. Firstly, we separately studied the influence of somatic membrane capacitance Cs and dendritic membrane capacitance Cd on neuronal firing patterns. Through numerical simulation, we observed that they had two different types of period-adding scenarios, i.e. with and without chaotic bursting. Secondly, our results indicated that when the time delay was included in the model, periodic motions were more inclined to be destroyed, while at the same time, corresponding new chaotic motions were induced. These findings suggested that membrane capacitance and time delay play a pivotal functional role in modulating dynamical firing properties of neurons, especially aspects which lead to behaviors which result in changes to bursting patterns.
Collapse
|
13
|
Wilson CS, Mongin AA. Cell Volume Control in Healthy Brain and Neuropathologies. CURRENT TOPICS IN MEMBRANES 2018; 81:385-455. [PMID: 30243438 DOI: 10.1016/bs.ctm.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Regulation of cellular volume is a critical homeostatic process that is intimately linked to ionic and osmotic balance in the brain tissue. Because the brain is encased in the rigid skull and has a very complex cellular architecture, even minute changes in the volume of extracellular and intracellular compartments have a very strong impact on tissue excitability and function. The failure of cell volume control is a major feature of several neuropathologies, such as hyponatremia, stroke, epilepsy, hyperammonemia, and others. There is strong evidence that such dysregulation, especially uncontrolled cell swelling, plays a major role in adverse pathological outcomes. To protect themselves, brain cells utilize a variety of mechanisms to maintain their optimal volume, primarily by releasing or taking in ions and small organic molecules through diverse volume-sensitive ion channels and transporters. In principle, the mechanisms of cell volume regulation are not unique to the brain and share many commonalities with other tissues. However, because ions and some organic osmolytes (e.g., major amino acid neurotransmitters) have a strong impact on neuronal excitability, cell volume regulation in the brain is a surprisingly treacherous process, which may cause more harm than good. This topical review covers the established and emerging information in this rapidly developing area of physiology.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
14
|
Hoshino O, Zheng M, Watanabe K. Perceptual judgments via sensory-motor interaction assisted by cortical GABA. J Comput Neurosci 2018; 44:233-251. [PMID: 29387993 DOI: 10.1007/s10827-018-0677-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2017] [Revised: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Recurrent input to sensory cortex, via long-range reciprocal projections between motor and sensory cortices, is essential for accurate perceptual judgments. GABA levels in sensory cortices correlate with perceptual performance. We simulated a neuron-astrocyte network model to investigate how top-down, feedback signaling from a motor network (Nmot) to a sensory network (Nsen) affects perceptual judgments in association with ambient (extracellular) GABA levels. In the Nsen, astrocytic transporters modulated ambient GABA levels around pyramidal cells. A simple perceptual task was implemented: detection of a feature stimulus presented to the Nsen. The Nmot showed distinct perceptual behaviors: hit, fault, and miss. A hit is a correct response to the stimulus, a fault is a wrong response to the stimulus, and a miss is no response to the stimulus. In hits, the feedback signaling increased the gain of Nsen pyramidal cells and accelerated the reaction speed of Nmot pyramidal cells to the stimulus. Without feedback signaling, the Nsen but not Nmot responded to the stimulus, resulting in a miss. With too strong feedback signaling, the Nmot resulted in a fault, namely, stimulus-insensitive but not stimulus-sensitive pyramidal cells wrongly responded. Balancing the feedforward and feedback signaling formed a coherent, ongoing-spontaneous neuronal state, by which the highest hit rate was achieved. A transient reduction in local ambient GABA levels, triggered by the stimulus, contributed to accelerating the reaction speed under noisy environmental conditions. Adjusting the basal ambient GABA level ensured high hit rates. We suggest that motor cortex feedback may accelerate reaction speed to sensory stimulation by promoting coherency in ongoing-spontaneous neuronal activity between sensory and motor cortices, thereby achieving prompt perceptual judgments. Spatiotemporal modulation of ambient GABA levels, possibly by astrocytic transporters, assists in making reliable perceptual judgments.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan. .,Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan.
| | - Meihong Zheng
- Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| |
Collapse
|
15
|
Hoshino O, Zheng M, Watanabe K. Improved Perceptual Learning by Control of Extracellular GABA Concentration by Astrocytic Gap Junctions. Neural Comput 2017; 30:184-215. [PMID: 29064786 DOI: 10.1162/neco_a_01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Learning of sensory cues is believed to rely on synchronous pre- and postsynaptic neuronal firing. Evidence is mounting that such synchronicity is not merely caused by properties of the underlying neuronal network but could also depend on the integrity of gap junctions that connect neurons and astrocytes in networks too. In this perspective, we set out to investigate the effect of astrocytic gap junctions on perceptual learning, introducing a model for coupled neuron-astrocyte networks. In particular, we focus on the fact that astrocytes are rich of GABA transporters (GATs) which can either uptake or release GABA depending on the astrocyte membrane potential, which is a function of local neural activity. We show that GABAergic signaling is a crucial component of intracolumnar neuronal synchronization, thereby promoting learning by neurons in the same cell assembly that are activated by a shared sensory cue. At the same time, we show that this effect can critically depend on astrocytic gap junctions insofar as these latter could synchronize extracellular GABA levels around many neurons and throughout entire cell assemblies. These results are supported by extensive computational arguments and predict that astrocytic gap junctions could improve perceptual learning by controlling extracellular GABA.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan, and Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, 963-8563, Japan
| | - Meihong Zheng
- Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, 963-8563, Japan
| |
Collapse
|
16
|
Sourikopoulos I, Hedayat S, Loyez C, Danneville F, Hoel V, Mercier E, Cappy A. A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology. Front Neurosci 2017; 11:123. [PMID: 28360831 PMCID: PMC5351272 DOI: 10.3389/fnins.2017.00123] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
As Moore's law reaches its end, traditional computing technology based on the Von Neumann architecture is facing fundamental limits. Among them is poor energy efficiency. This situation motivates the investigation of different processing information paradigms, such as the use of spiking neural networks (SNNs), which also introduce cognitive characteristics. As applications at very high scale are addressed, the energy dissipation needs to be minimized. This effort starts from the neuron cell. In this context, this paper presents the design of an original artificial neuron, in standard 65 nm CMOS technology with optimized energy efficiency. The neuron circuit response is designed as an approximation of the Morris-Lecar theoretical model. In order to implement the non-linear gating variables, which control the ionic channel currents, transistors operating in deep subthreshold are employed. Two different circuit variants describing the neuron model equations have been developed. The first one features spike characteristics, which correlate well with a biological neuron model. The second one is a simplification of the first, designed to exhibit higher spiking frequencies, targeting large scale bio-inspired information processing applications. The most important feature of the fabricated circuits is the energy efficiency of a few femtojoules per spike, which improves prior state-of-the-art by two to three orders of magnitude. This performance is achieved by minimizing two key parameters: the supply voltage and the related membrane capacitance. Meanwhile, the obtained standby power at a resting output does not exceed tens of picowatts. The two variants were sized to 200 and 35 μm2 with the latter reaching a spiking output frequency of 26 kHz. This performance level could address various contexts, such as highly integrated neuro-processors for robotics, neuroscience or medical applications.
Collapse
Affiliation(s)
- Ilias Sourikopoulos
- Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICA Lille, France
| | - Sara Hedayat
- Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICA Lille, France
| | - Christophe Loyez
- Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICALille, France; Centre National de la Recherche Scientifique, Université Lille, ISEN, Université Valenciennes, UMR 8520 - IEMNLille, France
| | - François Danneville
- Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICALille, France; Centre National de la Recherche Scientifique, Université Lille, ISEN, Université Valenciennes, UMR 8520 - IEMNLille, France
| | - Virginie Hoel
- Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICALille, France; Centre National de la Recherche Scientifique, Université Lille, ISEN, Université Valenciennes, UMR 8520 - IEMNLille, France
| | - Eric Mercier
- Université Grenoble Alpes, GrenobleGrenoble, France; CEA, LETI, MINATEC CampusGrenoble, France
| | - Alain Cappy
- Centre National de la Recherche Scientifique, Université Lille, USR 3380 - IRCICALille, France; Centre National de la Recherche Scientifique, Université Lille, ISEN, Université Valenciennes, UMR 8520 - IEMNLille, France
| |
Collapse
|
17
|
Kjaerby C, Rasmussen R, Andersen M, Nedergaard M. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function? Neurochem Res 2017; 42:1810-1822. [PMID: 28210958 DOI: 10.1007/s11064-017-2195-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca2+ signaling in response to activation of the noradrenergic system, but whether astrocytic Ca2+ signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca2+ signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.
Collapse
Affiliation(s)
- Celia Kjaerby
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Rune Rasmussen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Department of Biomedicine, The Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Mie Andersen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
18
|
Wanke E, Gullo F, Dossi E, Valenza G, Becchetti A. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents. J Neurophysiol 2016; 116:2706-2719. [PMID: 27683885 PMCID: PMC5133298 DOI: 10.1152/jn.00509.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023] Open
Abstract
In neocortex networks, we simultaneously captured spikes and the slower astrocytes' K+and glutamate transporter (GluT) currents with the use of individual MEA electrodes. Inward and outward K+currents in different regions of the glial syncytium suggested that spatial buffering was operant. Moreover, in organotypic slices from ventral tegmental area and prefrontal cortex, the large GluT current amplitudes allowed to measure transporter currents with a single electrode. Our method allows direct study of the dynamic interplay of different cell types in excitable and nonexcitable tissue. Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.
Collapse
Affiliation(s)
- Enzo Wanke
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Elena Dossi
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Gaetano Valenza
- Research Centre "E. Piaggio" and Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| |
Collapse
|
19
|
Agnati LF, Marcoli M, Maura G, Fuxe K, Guidolin D. The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. Rev Neurosci 2016; 27:347-63. [DOI: 10.1515/revneuro-2015-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
AbstractSeveral ion channels can be randomly and spontaneously in an open state, allowing the exchange of ion fluxes between extracellular and intracellular environments. We propose that the random changes in the state of ion channels could be also due to proteins exploring their energy landscapes. Indeed, proteins can modify their steric conformation under the effects of the physicochemical parameters of the environments with which they are in contact, namely, the extracellular, intramembrane and intracellular environments. In particular, it is proposed that the random walk of proteins in their energy landscape is towards attractors that can favor the open or close condition of the ion channels and/or intrinsic activity of G-protein-coupled receptors. The main aspect of the present proposal is that some relevant physicochemical parameters of the environments (e.g. molecular composition, temperature, electrical fields) with which some signaling-involved plasma membrane proteins are in contact alter their conformations. In turn, these changes can modify their information handling via a modulatory action on their random walk towards suitable attractors of their energy landscape. Thus, spontaneous and/or signal-triggered electrical activities of neurons occur that can have emergent properties capable of influencing the integrative actions of brain networks. Against this background, Cook’s hypothesis on ‘cell sentience’ is developed by proposing that physicochemical parameters of the environments with which the plasma-membrane proteins of complex cellular networks are in contact fulfill a fundamental role in their spontaneous and/or signal-triggered activity. Furthermore, it is proposed that a specialized organelle, the primary cilium, which is present in most cells (also neurons and astrocytes), could be of peculiar importance to pick up chemical signals such as ions and transmitters and to detect physical signals such as pressure waves, thermal gradients, and local field potentials.
Collapse
Affiliation(s)
| | - Manuela Marcoli
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Guido Maura
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Kjell Fuxe
- 2Karolinska Institutet, Department of Neuroscience, S-17177 Stockholm, Sweden
| | - Diego Guidolin
- 4University of Padova, Department of Molecular Medicine, I-35122 Padova, Italy
| |
Collapse
|
20
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
21
|
Abstract
All brain normal or pathological activities occur in one of the states of vigilance: wake, slow-wave sleep, or REM sleep. Neocortical seizures preferentially occur during slow-wave sleep. We provide a description of neuronal behavior and mechanisms mediating such a behavior within neocortex taking place in natural states of vigilance as well as during seizures pointing to similarities and differences exhibited during sleep and seizures. A concept of epileptic focus is described using a model of cortical undercut, because in that model, the borders of the focus are well defined. In this model, as in other models of acquired epilepsy, the main factor altering excitability is deafferentation, which upregulates neuronal excitability that promotes generation of seizures. Periods of disfacilitation recorded during slow-wave sleep further upregulate neuronal excitability. It appears that the state of neurons and neuronal network in the epileptic focus produced by deafferentation are such that seizures cannot be generated there. Instead, seizures always start around the perimeter of the undercut cortex. Therefore, we define these areas as the seizure focus. In this zone, neuronal connectivity and excitability are moderately enhanced, lowering the threshold for seizure generation.
Collapse
|
22
|
Schramm AE, Marinazzo D, Gener T, Graham LJ. The Touch and Zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and glial cells. PLoS One 2014; 9:e97310. [PMID: 24875855 PMCID: PMC4038476 DOI: 10.1371/journal.pone.0097310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2013] [Accepted: 04/18/2014] [Indexed: 11/19/2022] Open
Abstract
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.
Collapse
Affiliation(s)
- Adrien E. Schramm
- Neurophysiology & New Microscopies Laboratory, INSERM U603 - CNRS UMR 8154, Université Paris Descartes, Paris, France
| | - Daniele Marinazzo
- Neurophysiology & New Microscopies Laboratory, INSERM U603 - CNRS UMR 8154, Université Paris Descartes, Paris, France
| | - Thomas Gener
- Neurophysiology & New Microscopies Laboratory, INSERM U603 - CNRS UMR 8154, Université Paris Descartes, Paris, France
| | - Lyle J. Graham
- Neurophysiology & New Microscopies Laboratory, INSERM U603 - CNRS UMR 8154, Université Paris Descartes, Paris, France
| |
Collapse
|
23
|
Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Med 2014; 15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/26/2023]
|
24
|
Dallérac G, Chever O, Rouach N. How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 2013; 7:159. [PMID: 24101894 PMCID: PMC3787198 DOI: 10.3389/fncel.2013.00159] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023] Open
Abstract
A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France Paris, France
| | | | | |
Collapse
|
25
|
Frank MG. Astroglial regulation of sleep homeostasis. Curr Opin Neurobiol 2013; 23:812-8. [PMID: 23518138 DOI: 10.1016/j.conb.2013.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Mammalian sleep is regulated by two distinct mechanisms. A circadian oscillator provides timing signals that organize sleep and wake across the 24 hour day. A homeostatic mechanism increases sleep drive and sleep amounts (or intensity) as a function of prior time awake. The cellular mechanisms of sleep homeostasis are poorly defined, but are thought to be primarily neuronal. According to one view, sleep homeostasis arises from interactions between subcortical neurons that register sleep pressure and other neurons that promote either sleep or wakefulness. Alternatively, sleep drive may arise independently among neurons throughout the brain in a use-dependent fashion. Implicit in both views is the idea that sleep homeostasis is solely the product of neurons. In this article, I discuss an emerging view that glial astrocytes may play an essential role in sleep homeostasis.
Collapse
Affiliation(s)
- Marcos G Frank
- University of Pennsylvania, Perelman School of Medicine, Department of Neuroscience, 215 Stemmler Hall, 35th & Hamilton Walk, Philadelphia, PA 19104-6074, United States.
| |
Collapse
|
26
|
Florence CM, Baillie LD, Mulligan SJ. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 2012; 7:e51124. [PMID: 23226475 PMCID: PMC3511399 DOI: 10.1371/journal.pone.0051124] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+)](o)) and pH homeostasis. Pathological brain states that result in [K(+)](o) and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+)](o) (3 mM). Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3-)) ions as swelling was significantly decreased when the influx of HCO(3-) was reduced. We found: 1) in HCO(3-) free extracellular solution astrocytes swelled by 5.4±0.7%, 2) when the activity of the sodium-bicarbonate cotransporter (NBC) was blocked the astrocytes swelled by 8.3±0.7%, and 3) in the presence of an extracellular carbonic anhydrase (CA) inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3-) efflux is known to occur through the γ-amino-butyric acid (GABA) channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3-) mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A) channel agonist muscimol. Astrocyte shrinkage from GABA(A) channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ). These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.
Collapse
Affiliation(s)
- Clare M. Florence
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Landon D. Baillie
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sean J. Mulligan
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Hoshino O. Regulation of Ambient GABA Levels by Neuron-Glia Signaling for Reliable Perception of Multisensory Events. Neural Comput 2012; 24:2964-93. [DOI: 10.1162/neco_a_00356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
Activities of sensory-specific cortices are known to be suppressed when presented with a different sensory modality stimulus. This is referred to as cross-modal inhibition, for which the conventional synaptic mechanism is unlikely to work. Interestingly, the cross-modal inhibition could be eliminated when presented with multisensory stimuli arising from the same event. To elucidate the underlying neuronal mechanism of cross-modal inhibition and understand its significance for multisensory information processing, we simulated a neural network model. Principal cell to and GABAergic interneuron to glial cell projections were assumed between and within lower-order unimodal networks (X and Y), respectively. Cross-modality stimulation of Y network activated its principal cells, which then depolarized glial cells of X network. This let transporters on the glial cells export GABA molecules into the extracellular space and increased a level of ambient (extrasynaptic) GABA. The ambient GABA molecules were accepted by extrasynaptic GABAa receptors and tonically inhibited principal cells of the X network. Cross-modal inhibition took place in a nonsynaptic manner. Identical modality stimulation of X network activated its principal cells, which then activated interneurons and hyperpolarized glial cells of the X network. This let their transporters import (remove) GABA molecules from the extracellular space and reduced tonic inhibitory current in principal cells, thereby improving their gain function. Top-down signals from a higher-order multimodal network (M) contributed to elimination of the cross-modal inhibition when presented with multisensory stimuli that arose from the same event. Tuning into the multisensory event deteriorated if the cross-modal inhibitory mechanism did not work. We suggest that neuron-glia signaling may regulate local ambient GABA levels in order to coordinate cross-modal inhibition and improve neuronal gain function, thereby achieving reliable perception of multisensory events.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
| |
Collapse
|
28
|
Ek-Vitorin JF, Burt JM. Structural basis for the selective permeability of channels made of communicating junction proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:51-68. [PMID: 22342665 DOI: 10.1016/j.bbamem.2012.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/03/2011] [Revised: 01/24/2012] [Accepted: 02/01/2012] [Indexed: 01/08/2023]
Abstract
The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore's limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
29
|
Burst firing transitions in two-compartment pyramidal neuron induced by the perturbation of membrane capacitance. Neurol Sci 2011; 33:595-604. [PMID: 22037696 DOI: 10.1007/s10072-011-0819-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Neuronal membrane capacitance C (m) is one of the prominent factors in action potential initiation and propagation and then influences the firing patterns of neurons. Exploring the roles that C (m) plays in different firing patterns can facilitate the understanding of how different factors might influence neuronal firing behaviors. However, the impacts of variations in C (m) on neuronal firing patterns have been only partly explored until now. In this study, the influence of C (m) on burst firing behaviors of a two-compartment pyramidal neuron (including somatic compartment and dendritic compartment) was investigated by means of computer simulation, the value of C (m) in each compartment was denoted as C (m,s) and C (m,d), respectively. Two cases were considered, in the first case, we let C (m,s) =C (m,d), and then changed them simultaneously. While in the second case, we assumed C (m,s) ≠C (m,d), and then changed them, respectively. From the simulation results obtained from these two cases, it was found that the variation of C (m) in the somatic compartment and the dendritic compartment show much difference, simulated results obtained from the variation of C (m,d) have much more similarities than that of C (m,s) when comparing with the results obtained in the first case under which C (m,s) =C (m,d). These different effects of C (m,s) and C (m,d) on neuronal firing behaviors may result from the different topology and functional roles of soma and dendrites. Numerical results demonstrated in this paper may give us some inspiration in understanding the possible roles of C (m) in burst firing patterns, especially their transitions in compartmental neurons.
Collapse
|
30
|
Dong Y, Mihalas S, Niebur E. Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons. Neural Comput 2010; 23:421-34. [PMID: 21105825 DOI: 10.1162/neco_a_00078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022]
Abstract
An accurate calculation of the first passage time probability density (FPTPD) is essential for computing the likelihood of solutions of the stochastic leaky integrate-and-fire model. The previously proposed numerical calculation of the FPTPD based on the integral equation method discretizes the probability current of the voltage crossing the threshold. While the method is accurate for high noise levels, we show that it results in large numerical errors for small noise. The problem is solved by analytically computing, in each time bin, the mean probability current. Efficiency is further improved by identifying and ignoring time bins with negligible mean probability current.
Collapse
Affiliation(s)
- Yi Dong
- Zanvyl Krieger Mind/Brain Institute and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
31
|
In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 2010; 194:206-17. [PMID: 20951737 DOI: 10.1016/j.jneumeth.2010.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2010] [Revised: 09/28/2010] [Accepted: 10/07/2010] [Indexed: 01/30/2023]
Abstract
This technique proposes a new approach to correlate intra- and extracellular variations of the ionic concentrations in vivo by means of tapered optical waveguides coupled to standard electrophysiological electrodes to monitor in vivo simultaneously the intracellular and extracellular K(+) concentration as well as the neighboring field potential. The optical fibers were tapered to a final diameter of approximately 10 μm and were used to guide the excitation light deep into the tissue and to collect the fluorescence emanating from the intracellular milieu. This fiber was coupled to a double barrel ion-sensitive electrode forming a micro-optrode with a final diameter around 15 μm. The method was successfully used to record the intracellular K(+) evolution with the fluorescent indicator PBFI during three states: normal sleep-like patterns, paroxysmal seizures, and coma. While we could not disclose any phasic fluctuations of the intracellular K(+) during normal sleep patterns, they were clearly present during seizures and coma. In the majority of cases (58%), paroxysmal discharges were associated with positive variations of the intracellular fluorescence of 62±5% corresponding to extracellular K(+) increases of 2.04±0.4 mM. In the remaining cases (42%) intracellular K(+) dropped by 44.4±12% for an extracellular K(+) increase of 2.62±0.47 mM. We suggest that this differential behavior might reflect different cellular populations (glia vs. neurons, respectively). Comatose states were accompanied by an extracellular drop of K(+) of 1.31±0.13 mM, which was reflected, in all cases, by an intracellular K(+) increase of 39±4%.
Collapse
|
32
|
Abstract
A number of exciting findings have been made in astrocytes during the past 15 years that have led many researchers to redefine how the brain works. Astrocytes are now widely regarded as cells that propagate Ca(2+) over long distances in response to stimulation, and, similar to neurons, release transmitters (called gliotransmitters) in a Ca(2+)-dependent manner to modulate a host of important brain functions. Although these discoveries have been very exciting, it is essential to place them in the proper context of the approaches used to obtain them to determine their relevance to brain physiology. This review revisits the key observations made in astrocytes that greatly impact how they are thought to regulate brain function, including the existence of widespread propagating intercellular Ca(2+) waves, data suggesting that astrocytes signal to neurons through Ca(2+)-dependent release of glutamate, and evidence for the presence of vesicular machinery for the regulated exocytosis of gliotransmitters.
Collapse
Affiliation(s)
- Todd A Fiacco
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
33
|
Abstract
In order to produce its desired effect, anaesthesia acts upon neuronal elements by modifying membrane conductances and transmitter interactions. The effect of higher doses of isoflurane, widely used in clinical settings, on the permeability of the blood-brain barrier (BBB) is meanwhile ignored. In this study we investigated the integrity of the BBB during various levels of isoflurane anaesthesia (1% and 3%) in cats by monitoring the extravasation of Evans blue. Simultaneously we measured the electroencephalogram (EEG), with particular emphasis on its direct current (DC) component. High doses of anaesthetic (3%) broke down the BBB in the cortex and thalamus, while milder doses (1%) only opened the BBB in the thalamus. The fluorescent signal of Evans blue was visible over an extravascular length of 23 mum in the cortex and 25 mum in the thalamus, similar to the diffusion of the same dye when the BBB was disrupted with mannitol. The opening of the BBB was associated with (i) a positive DC shift in the EEG measured on the scalp and (ii) an evaluated increase in cerebral volume of 2-2.8%. The opening of the BBB by high doses of isoflurane brings into discussion hitherto unexplored effects of anaesthesia on the brain. The electrophysiological correlate provided by the DC component of the EEG constitutes a promising option for the assessment of the BBB integrity during human anaesthesia.
Collapse
Affiliation(s)
- Samuel Tétrault
- Centre de recherche de l'Université Laval Robert-Giffard, Quebec, Canada
| | | | | | | |
Collapse
|
34
|
Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLoS One 2008; 3:e2525. [PMID: 18575586 PMCID: PMC2424136 DOI: 10.1371/journal.pone.0002525] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2008] [Accepted: 05/28/2008] [Indexed: 02/07/2023] Open
Abstract
Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca(2+)) concentration is important for astrocytes as Ca(2+) surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca(2+) activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca(2+) activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca(2+) dynamics by investigating two distinct EEG states ("synchronized" vs. "de-synchronized" states). We found that astrocytes in L1 had nearly twice higher Ca(2+) activity than L2/3. Furthermore, Ca(2+) fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca(2+) activity. These results suggest that spontaneous astrocytic Ca(2+) surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity.
Collapse
|
35
|
Abstract
Increasing levels of anesthesia are thought to produce a progressive loss of brain responsiveness to external stimuli. Here, we present the first report of a state window within anesthesia-induced coma, usually associated with an EEG pattern of burst suppression, during which brain excitability is dramatically increased so that even subliminal stimuli elicit bursts of whole-brain activity. We investigated this phenomenon in vivo using intracellular recordings of both neurons and glia, as well as extracellular calcium and EEG recordings. The results indicate that the bursting activity elicited with mechanical microstimulations, but also with auditory and visual stimuli, is dependent on complex mechanisms, including modulation of excitatory (NMDA) components, gap junction transmission, as well as the extracellular calcium concentration. The occurrence of bursting events is associated with a postburst refractory period that underlies the genesis of the alternating burst-suppression pattern. These findings raise the issue of what burst spontaneity during anesthesia-induced coma means and opens new venues for the handling of comatose patients.
Collapse
Affiliation(s)
- Daniel Kroeger
- Laboratoire de Neurophysiologie, Centre de Recherche Université Laval Robert-Giffard, Quebec, Quebec, Canada G1J 2G3
| | - Florin Amzica
- Laboratoire de Neurophysiologie, Centre de Recherche Université Laval Robert-Giffard, Quebec, Quebec, Canada G1J 2G3
| |
Collapse
|
36
|
Abstract
High salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodeling, cardiac hypertrophy, and stroke incidence. In this review, we discuss the molecular origins of primary sensors involved in the phenomenon of salt sensitivity. Based on the analysis of literature data, we conclude that the kidneys and central nervous system (CNS) are two major sites for salt sensing via several distinct mechanisms: 1) [Cl(-)] sensing in renal tubular fluids, primarily by Na(+)-K(+)-Cl(-) cotransporter (NKCC) isoforms NKCC2B and NKCC2A, whose expression is mainly limited to macula densa cells; 2) [Na(+)] sensing in cerebrospinal fluid (CSF) by a novel isoform of Na(+) channels, Na(x), expressed in subfornical organs; 3) sensing of CSF osmolality by mechanosensitive, nonselective cation channels (transient receptor potential vanilloid type 1 channels), expressed in neuronal cells of supraoptic and paraventricular nuclei; and 4) osmolarity sensing by volume-regulated anion channels in glial cells of supraoptic and paraventricular nuclei. Such multiplicity of salt-sensing mechanisms likely explains the differential effects of Na(+) and Cl(-) loading on the long-term maintenance of elevated blood pressure that is documented in experimental models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Department of Medicine and Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
37
|
Mishima T, Sakatani S, Hirase H. Intracellular labeling of single cortical astrocytes in vivo. J Neurosci Methods 2007; 166:32-40. [PMID: 17686526 DOI: 10.1016/j.jneumeth.2007.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2007] [Revised: 06/22/2007] [Accepted: 06/24/2007] [Indexed: 10/23/2022]
Abstract
Glial cells have traditionally been considered to play supportive roles in the central nervous system. As recent experimental evidence suggests glial cells' participation in neural information processing, there has been a need to monitor the physiology of glial cells in vivo in the matured brain. Concurrently, identification and classification of the recorded glial cells is essential as there are at least several different kinds of glial cells. Past studies have achieved in vivo intracellular electrophysiological recording of glial cells using sharp glass microelectrodes, however, morphological recovery and identification of the recorded cells have hardly been done, due to technical difficulties. We demonstrate that use of large fragment biotinylated dextran amine (BDA) is an effective way to label a single glial cell recorded with a sharp microelectrode in vivo. Furthermore, the tracer signal amplification was achieved by a combination of avidin biotinylated horseradish peroxidase macromolecular complex (ABC) and tyramide-based methods, making multiple immunohistochemistry feasible. Using the method described in this study, we have successfully recorded and labeled cortical glial cells including astrocytes, oligodendrocytes, and microglia.
Collapse
Affiliation(s)
- Tsuneko Mishima
- Hirase Research Unit, Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
38
|
Weinand ME, Hussain N, Labiner DM, Ahern GL. Correlation of electrocorticographic to clinical seizure onset and interhemispheric propagation times in temporal lobe epilepsy. ACTA ACUST UNITED AC 2006; 13:233-6. [PMID: 16963240 DOI: 10.1016/j.pathophys.2006.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
This study was performed to test the hypothesis that, in human temporal lobe epilepsy, electrocorticographic time factors involved in the ictal EEG to clinical ictal transition (electrocorticographic to clinical seizure onset time, ECOT) and the interhemispheric propagation of epileptic activity (interhemispheric propagation time, IHPT), which are independently correlated with temporal lobe epileptogenicity and predictive of seizure-free outcome following temporal lobectomy, are correlated with one another in a quantitative fashion. A series of 37 patients with medically intractable temporal lobe seizures was studied with long-term subdural videoelectroencephalographic monitoring. Temporal lobe seizure interhemispheric propagation time (IHPT) was found to be a negative, exponential function of electrocorticographic to clinical seizure onset time (ECOT) (f(x)=8.201x10(-0.016x), r=0.347, d.f.=35, t=2.19, p<0.05, where f(x)=IHPT and x=ECOT). A small increase in ECOT was associated with a substantial decrease in IHPT and vice versa. The results suggest the electrophysiological time factor, ECOT, involved in the transition from ictal EEG seizure onset to clinical seizure onset, may determine the speed of interhemispheric propagation of established epileptic activity. The results suggest the interesting hypothesis that, in human temporal lobe epilepsy and, perhaps, under non-pathological circumstances, the human temporal lobe might possess a "time-labeling" function amenable to quantitative analysis.
Collapse
Affiliation(s)
- Martin E Weinand
- Division of Neurosurgery, Department of Surgery, University of Arizona, College of Medicine, P.O. Box 245070, 1501 N. Campbell Avenue, Tucson, AZ 85724-5070, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Hepatic encephalopathy (HE) is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. A number of pathological processes affecting glial and neuronal function have been identified, including hyper-ammonia, changes within the excitatory and inhibitory transmitter systems, as well as osmolytic changes with consecutive cell swelling. One explanation how these pathological processes result in neurological deficits in HE is the concept of pathologically synchronized oscillations within and between relevant brain regions. A number of studies suggest that the cognitive deficits and the reduced level of alertness in patients with HE can be attributed to a significantly slowed and pathologically synchronized spontaneous oscillatory brain activity, depending on the grade of HE. Moreover, HE motor symptoms, like postural tremor called"mini asterixis," have recently been shown to be associated with abnormal thalamo-cortical and cortico-muscular synchronization. Indirect evidence exists from studies of processing and recognition of flicker stimuli that in HE slowing of oscillations also occurs in the visual system. Taken together, pathological synchronization of neuronal activity may turn out to be a promising pathophysiological concept for linking neuronal dysfunction to the diversity of clinical deficits in HE.
Collapse
Affiliation(s)
- Lars Timmermann
- Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
This study aims at understanding complex interactions between cortical neurons, glia and blood supply developing during the transition from slow-wave sleep to wakefulness. In spite of essential advances from in vitro and culture preparations, the basic mechanisms of glial interactions with their cellular and ionic environment had remained uninvestigated in vivo. Here we approach this issue by performing simultaneous intracellular recordings of cortical neurons and glia, together with measurements of cerebral blood flow (CBF), extracellular K+ concentrations and local field potentials in both anesthetized (ketamine-xylazine) and naturally behaving cats. Under anesthesia, cortical activation was elicited with electric stimulation of cholinergic nuclei (pedunculopontine tegmental in the brainstem and/or nucleus basalis in the basal forebrain). Iontophoretic application of acetylcholine on the recorded cells was also used. In the vast majority of cases (> 80%) glial cells were hyperpolarized during electric stimulation or spontaneous activation. This result was also obtained in all cases where iontophoresis was used or when glutamatergic kainate/quisqualate receptors were blocked with 6-cyano-7-nitroquinoxaline-2,3-dione. The glial hyperpolarization was associated with steady neuronal depolarization, increased CBF, lower extracellular K+ concentration, increased membrane resistance, decreased membrane capacitance and persistent positive DC field potentials. In some cases of cortical activation (< 20%), glial cells displayed sustained depolarizing potentials, in parallel with neuronal depolarization, decreased CBF and more negative DC field potentials. The above-mentioned effects of cholinergic activation were blocked by the muscarinic antagonist scopolamine. We propose that the glial response to cholinergic activation results from the balance between the direct hyperpolarizing action of acetylcholine and the depolarizing modulation of glutamate from the neighboring neurons, in addition to the modulation of the interglial communication pathway and/or the ionic traffic across blood vessels.
Collapse
Affiliation(s)
- Josée Seigneur
- Laboratoire de neurophysiologie, Faculté de médecine, Université Laval, Quebec, Canada G1K 7P4
| | | | | | | |
Collapse
|
41
|
Uckermann O, Vargová L, Ulbricht E, Klaus C, Weick M, Rillich K, Wiedemann P, Reichenbach A, Syková E, Bringmann A. Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea pig retina. J Neurosci 2005; 24:10149-58. [PMID: 15537885 PMCID: PMC6730174 DOI: 10.1523/jneurosci.3203-04.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
Neuronal activity is accompanied by transmembranous ion fluxes that cause cell volume changes. In whole mounts of the guinea pig retina, application of glutamate resulted in fast swelling of neuronal cell bodies in the ganglion cell layer (GCL) and the inner nuclear layer (INL) (by approximately 40%) and a concomitant decrease of the thickness of glial cell processes in the inner plexiform layer (IPL) (by approximately 40%) that was accompanied by an elongation of the glial cells, by a thickening of the whole retinal tissue, and by a shrinkage of the extracellular space (by approximately 18%). The half-maximal effect of glutamate was observed at approximately 250 mum, after approximately 4 min. The swelling was caused predominantly by AMPA-kainate receptor-mediated influx of Na+ into retinal neurons. Similar but transient morphological alterations were induced by high K+ and dopamine, which caused release of endogenous glutamate and subsequent activation of AMPA-kainate receptors. Apparently, retinal glutamatergic transmission is accompanied by neuronal cell swelling that causes compensatory morphological alterations of glial cells. The effect of dopamine was elicitable only during light adaptation but not in the dark, and glutamate and high K+ induced strong ereffects in the dark than in the light. This suggests that not only the endogenous release of dopamine but also the responsiveness of glutamatergic neurons to dopamine is regulated by light-dark adaptation. Similar morphological alterations (neuronal swelling and decreased glial process thickness) were observed in whole mounts isolated immediately after experimental retinal ischemia, suggesting an involvement of AMPA-kainate receptor activation in putative neurotoxic cell swelling in the postischemic retina.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Paul-Flechsig-Institute of Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The cellular components of the brain are neurons, glia and vascular cells. These three entities form a metabolic network to sustain brain activity. Interactions among these cell types have been studied extensively in vitro, where the cells are easily accessible to physiological and pharmacological manipulations. With the advent of optical tools, it has become possible to investigate the cerebral metabolic network in vitro at the cellular and subcellular levels. However, the metabolic and homeostatic nature of neuronal-glial-vascular interactions must eventually be examined in vivo, and multi-photon imaging now provides a means to monitor neurovascular units in living experimental animals.
Collapse
Affiliation(s)
- Hajime Hirase
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
43
|
ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 2004; 288:C204-13. [PMID: 15371260 DOI: 10.1152/ajpcell.00330.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are activated in response to cell swelling but may also show limited activity in nonswollen cells. VRACs are permeable to inorganic anions and small organic osmolytes, including the amino acids aspartate, glutamate, and taurine. Several recent reports have demonstrated that neurotransmitters or hormones, such as ATP and vasopressin, induce or strongly potentiate astrocytic whole cell Cl(-) currents and amino acid release, which are inhibited by VRAC blockers. In the present study, we explored the intracellular signaling mechanisms mediating the effects of ATP on d-[(3)H]aspartate release via the putative VRAC pathway in rat primary astrocyte cultures. Cells were exposed to moderate (5%) or substantial (30%) reductions in medium osmolarity. ATP strongly potentiated d-[(3)H]aspartate release in both moderately swollen and substantially swollen cells. These ATP effects were blocked (>or=80% inhibition) by intracellular Ca(2+) chelation with BAPTA-AM, calmodulin inhibitors, or a combination of the inhibitors of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMK II). In contrast, control d-[(3)H]aspartate release activated by the substantial hyposmotic swelling showed little (<or=25% inhibition) sensitivity to the same pharmacological agents. These data indicate that ATP regulates VRAC activity via two separate Ca(2+)-sensitive signaling cascades involving PKC and CaMK II and that cell swelling per se activates VRACs via a separate Ca(2+)/calmodulin-independent signaling mechanism. Ca(2+)-dependent organic osmolyte release via VRACs may contribute to the physiological functions of these channels in the brain, including astrocyte-to-neuron intercellular communication.
Collapse
|
44
|
Kimelberg HK. Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 2004; 45:511-9. [PMID: 15186917 DOI: 10.1016/j.neuint.2003.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/10/2003] [Indexed: 01/01/2023]
Abstract
Rapid swelling of astrocytes in primary culture by exposure to hyposmotic medium (or slower swelling by exposure to high K+ medium) leads to release of the excitatory amino acids (EAAs) glutamate and aspartate. One question that arises is whether these phenomena are only relevant to pathological states such as ischemia and trauma where marked astrocytic swelling occurs or whether much smaller astrocytic volume changes, that might be encountered under physiological states, will cause such release. We have recently found that extracellular ATP strongly potentiated volume-regulated anion channels (VRACs)-mediated-excitatory amino acid release in non-swollen and osmotically swollen primary astrocyte cultures. However, ATP does not seem to directly activate but instead positively modulates VRACs and we postulate that a minor fraction of these are active under isoosmotic conditions based on the finding that in hyperosmotic media the ATP-induced increase was inhibited. Agonist and inhibitor analysis suggests that the effect of ATP is mediated by several subtypes of metabotropic P2Y receptors. Thus, the concept of volume transmission may be extended to volume-mediated transmission, whereby moderate cell swelling causes release of neurotransmitter substances. The product of the superoxide oxygen radical and nitric oxide, peroxynitrite, formed under pathological conditions such as cerebral ischemia, also potentiated the release of D-[3H]aspartate from astrocyte cultures exposed to limited or marked swelling via intracellular signaling mechanisms involving tyrosine kinases (TKs). Thus, the enhancement of cell volume-dependent release of excitatory amino acids from astrocytes can be physiological or pathological and its magnitude depends on the degree of the cell volume increase.
Collapse
Affiliation(s)
- Harold K Kimelberg
- Neural and Vascular Biology Theme, Ordway Research Institute, Inc., 150 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
45
|
Rouach N, Koulakoff A, Giaume C. Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 2004; 45:265-72. [PMID: 15145542 DOI: 10.1016/j.neuint.2003.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2003] [Accepted: 07/31/2003] [Indexed: 11/20/2022]
Abstract
A number of studies have contributed to demonstrate that neurons and astrocytes tightly and actively interact. Indeed, the presence of astrocytes in neuronal cultures increases the number of synapses and their efficiency, and thanks to enzymatic and uptake processes, astrocytes play a role in neuroprotection. A typical feature of astrocytes is that they establish cell-cell communication in vitro, as well as in situ, through intercellular channels forming specialized membrane areas defined as gap junctions. These channels are composed of junctional proteins termed connexins (Cxs): in astrocytes connexin 43 (Cx43) and 30 (Cx30) have been shown to prevail. Several recent works indicate that gap junctional communication (GJC) and/or connexin expression in astrocytes are controlled by neurons. Altogether, these observations lead to the concept that neuronal and astrocytic networks interact through mutual setting of their respective mode of communication and that astrocyte gap junctions represent a target in neuroglial interaction.
Collapse
Affiliation(s)
- Nathalie Rouach
- INSERM U114, Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | | | |
Collapse
|
46
|
Abstract
Different forms of electrical paroxysms in experimental animals mimic the patterns of absence seizures associated with spike-wave complexes at approximately 3 Hz and of Lennox-Gastaut seizures with spike-wave or polyspike-wave complexes at approximately 1.5-2.5 Hz, intermingled with fast runs at 10-20 Hz. Both these types of electrical seizures are preferentially generated during slow-wave sleep. Here, we challenge the hypothesis of a subcortical pacemaker that would account for suddenly generalized spike-wave seizures as well as the idea of an exclusive role of synaptic excitation in the generation of paroxysmal depolarizing components, and we focus on three points, based on multiple intracellular and field potential recordings in vivo that are corroborated by some clinical studies: (a) the role of neocortical bursting neurons, especially fast-rhythmic-bursting neurons, and of very fast oscillations (ripples, 80-200 Hz) in seizure initiation; (b) the cortical origin of both these types of electrical paroxysms, the synaptic propagation of seizures from one to other, local and distant, cortical sites, finally reaching the thalamus, where the synchronous cortical firing excites thalamic reticular inhibitory neurons and thus leads to steady hyperpolarization and phasic inhibitory postsynaptic potentials in a majority of thalamocortical neurons, which might explain the obliteration of signals from the external world and the unconsciousness during absence seizures; and (c) the cessation of seizures, whose cellular mechanisms have only begun to be investigated and remain an open avenue for research.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| | | |
Collapse
|
47
|
Nita DA, Vanhatalo S, Lafortune FD, Voipio J, Kaila K, Amzica F. Nonneuronal origin of CO2-related DC EEG shifts: an in vivo study in the cat. J Neurophysiol 2004; 92:1011-22. [PMID: 15056689 DOI: 10.1152/jn.00110.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
We studied the mechanisms underlying CO(2)-dependent DC potential shifts, using epicranial, epidural, epicortical, intraventricular, and intraparenchymal (intraneuronal, intraglial, and field) recordings in ketamine-xylazine-anesthetized cats. DC shifts were elicited by changes in artificial ventilation, causing end-tidal CO(2) variations within a 2-5% range. Hypercapnia was consistently associated with negative scalp DC shifts (average shift -284.4 microV/CO(2)%, range -216 to -324 microV/CO(2)%), whereas hypocapnia induced positive scalp DC shifts (average shift 307.8 microV/CO(2)%, range 234 to 342 microV/CO(2)%) in all electrodes referenced versus the nasium bone. The former condition markedly increased intracranial pressure (ICP), whereas the latter only slightly reduced ICP. Breakdown of the blood-brain barrier (BBB) resulted in a positive DC shift and drastically reduced subsequent DC responses to hypo-/hypercapnia. Thiopental and isoflurane also elicited a dose-dependent positive DC shift and, at higher doses, hypo-/hypercapnia responses displayed reverted polarity. As to the possible implication of neurons in the production of DC shifts, no polarity reversal was recorded between scalp, various intracortical layers, and deep brain structures. Moreover, the membrane potential of neurons and glia did not show either significant or systematic variations in association with the scalp-recorded CO(2)-dependent DC shifts. Pathological activities of neurons during spike-wave seizures produced DC shifts of significantly smaller amplitude than those generated by hyper-/hypocapnia. DC shifts were still elicited when neuronal circuits were silent during anesthesia-induced burst-suppression patterns. We suggest that potentials generated by the BBB are the major source of epicortical/cranial DC shifts recorded under conditions affecting brain pH and/or cerebral blood flow.
Collapse
Affiliation(s)
- Dragos A Nita
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
This paper reviews the present knowledge about the cellular origins of vigilance states (wakefulness and slow-wave sleep) from the perspective of their involvement in the triggering of epileptic seizures. The data stem from intracellular recordings (most of them dual impalements of pairs of neurons and glia), extracellular ionic concentrations (mainly K and Ca ) and simultaneous intracortical field potentials from the cortex of cats. These data were corroborated with recordings from naturally sleeping animals and humans. It is shown that sleep is dominated by a cortically generated slow (<1 Hz) oscillation resulting from the complex interplay within networks of neurons and glia, which are modulated by the more diffuse action of extracellular currents of ions. Wakefulness is produced through the activation of brainstem and basal forebrain structures, which disrupt sleep oscillations and elicit a global change of the extraneuronal milieu, with profound modifications of glial and cerebral blood flow parameters. Paroxysmal events arising during quiet sleep evolve within the cortex from normal slow sleep oscillations. The synchronization of large cortical and eventually subcortical territories relies on the propagation of increased currents of K through the glial syncytium, which compensate for the reduced synaptic efficacy due to the depletion of extracellular Ca.
Collapse
Affiliation(s)
- Florin Amzica
- Laboratoire de neurophysiologie, Faculté de médecine, Université Laval, Quebec, Canada.
| |
Collapse
|
49
|
Mongin AA, Kimelberg HK. ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am J Physiol Cell Physiol 2002; 283:C569-78. [PMID: 12107067 DOI: 10.1152/ajpcell.00438.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Volume-dependent ATP release and subsequent activation of purinergic P2Y receptors have been implicated as an autocrine mechanism triggering activation of volume-regulated anion channels (VRACs) in hepatoma cells. In the brain ATP is released by both neurons and astrocytes and participates in intercellular communication. We explored whether ATP triggers or modulates the release of excitatory amino acid (EAAs) via VRACs in astrocytes in primary culture. Under basal conditions exogenous ATP (10 microM) activated a small EAA release in 70-80% of the cultures tested. In both moderately (5% reduction of medium osmolarity) and substantially (35% reduction of medium osmolarity) swollen astrocytes, exogenous ATP greatly potentiated EAA release. The effects of ATP were mimicked by P2Y agonists and eliminated by P2Y antagonists or the ATP scavenger apyrase. In contrast, the same pharmacological maneuvers did not inhibit volume-dependent EAA release in the absence of exogenous ATP, ruling out a requirement of autocrine ATP release for VRAC activation. The ATP effect in nonswollen and moderately swollen cells was eliminated by a 5-10% increase in medium osmolarity or by anion channel blockers but was insensitive to tetanus toxin pretreatment, further supporting VRAC involvement. Our data suggest that in astrocytes ATP does not trigger EAA release itself but acts synergistically with cell swelling. Moderate cell swelling and ATP may serve as two cooperative signals in bidirectional neuron-astrocyte communication in vivo.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
50
|
Kandori A, Oe H, Miyashita K, Date H, Yamada N, Naritomi H, Chiba Y, Murakami M, Miyashita T, Tsukada K. Visualisation method of spatial interictal discharges in temporal epilepsy patients using magneto-encephalogram. Med Biol Eng Comput 2002; 40:327-31. [PMID: 12195980 DOI: 10.1007/bf02344215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The aim of the study was to develop a method for investigating how interictal epileptic discharges in temporal epilepsy patients are activated spatially. The activity was measured using magneto-encephalography (MEG). The MEG data were used to produce a current-arrow map that reflected the topographic distribution of the electrical current for each peak epileptic waveform. A large current distribution was obtained that appeared to be contained in the limbic structure, in each temporal lobe. The large current orientation indicated two opposite directions. Furthermore, the decrease in the maximum strength of the current-arrow, depending on the medication (e.g. the decrease from 11 to 6 pT m-1 in the left temporal lobe (contralateral stimuli)), suggested that the discharge distributions could be used to verify the efficacy of medication. Thus the topographical visualisation method could be a new strategy for diagnosis in temporal epilepsy patients.
Collapse
Affiliation(s)
- A Kandori
- Central Research Laboratory, Hitachi, Ltd, Kokubunjishi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|