1
|
Smith SS, Jahn KN, Sugai JA, Hancock KE, Polley DB. Objective autonomic signatures of tinnitus and sound sensitivity disorders. Sci Transl Med 2025; 17:eadp1934. [PMID: 40305576 DOI: 10.1126/scitranslmed.adp1934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/13/2024] [Accepted: 02/11/2025] [Indexed: 05/02/2025]
Abstract
Hypersensitivity, phantom percepts, and sensory reactivity are core features of many neurological disorders. Direct, objective measurements of these features have proven difficult to identify, leaving subjective questionnaires as the primary means of assessing sensory disorder severity. Here, we studied neurotypical adults (n = 50) or adults with sound sensitivity and tinnitus (ringing of the ears) (n = 47) and discovered a previously unidentified set of objective measurements that predicted individual differences in the Tinnitus Handicap Inventory (THI) and Hyperacusis Questionnaire (HQ). A neurophysiological assessment of central auditory gain demonstrated an elevation in participants with tinnitus and sound sensitivity but no association with symptom severity. Instead, accurate predictors of individual THI and HQ scores were identified in pupil dilations and facial movements elicited by emotionally evocative sounds. These findings highlight autonomic signatures of disrupted affective sound processing in persons with tinnitus and sound sensitivity disorders and introduce new approaches for their objective measurement.
Collapse
Affiliation(s)
- Samuel S Smith
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Jenna A Sugai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Fabrizio-Stover EM, Lee CM, Oliver DL, Burghard AL. Sound-evoked plasticity differentiates tinnitus from non-tinnitus mice. Front Neurosci 2025; 19:1549163. [PMID: 40297536 PMCID: PMC12034690 DOI: 10.3389/fnins.2025.1549163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Tinnitus is the perception of non-meaningful sound in the absence of external stimuli. Although tinnitus behavior in animal models is associated with altered central nervous system activity, it is not currently possible to identify tinnitus using neuronal activity alone. In the mouse inferior colliculus (IC), a subpopulation of neurons demonstrates a sustained increase in spontaneous activity after a long-duration sound (LDS). Methods Here, we use the "LDS test" to reveal tinnitus-specific differences in sound-evoked plasticity through IC extracellular recordings and the auditory brainstem response (ABRLDS) in CBA/CaJ mice after sound exposure and behavioral tinnitus assessment. Results Sound-exposed mice showed stronger and shorter tone-evoked responses in the IC compared to unexposed controls, but these differences were not strong predictors of tinnitus. In contrast, in the LDS test, non-tinnitus mice had a significantly stronger suppression in tone-evoked spike rate compared to tinnitus and unexposed control mice. ABR peak amplitudes also revealed robust differences between tinnitus and non-tinnitus mice, with ABR peaks from non-tinnitus mice exhibiting significantly stronger suppression in the LDS test compared to tinnitus and control mice. No significant differences were seen between cohorts in ABR amplitude, latency, wave V:I ratio, wave V:III ratio, I-V intra-peak latency, and I-VI intra-peak latency. We found high-frequency tone stimuli better suited to reveal tinnitus-specific differences for both extracellular IC and ABR recordings. Discussion We successfully used the LDS test to demonstrate that tinnitus-specific differences in sound-evoked plasticity can be shown using both multi-unit near-field recordings in the IC and non-invasive far-field recordings, providing a foundation for future electrophysiological research into the causes and treatment of tinnitus.
Collapse
Affiliation(s)
- Emily M. Fabrizio-Stover
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Christopher M. Lee
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Alice L. Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
3
|
Fabrizio-Stover EM, Oliver DL, Burghard AL. Tinnitus mechanisms and the need for an objective electrophysiological tinnitus test. Hear Res 2024; 449:109046. [PMID: 38810373 DOI: 10.1016/j.heares.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Tinnitus, the perception of sound with no external auditory stimulus, is a complex, multifaceted, and potentially devastating disorder. Despite recent advances in our understanding of tinnitus, there are limited options for effective treatment. Tinnitus treatments are made more complicated by the lack of a test for tinnitus based on objectively measured physiological characteristics. Such an objective test would enable a greater understanding of tinnitus mechanisms and may lead to faster treatment development in both animal and human research. This review makes the argument that an objective tinnitus test, such as a non-invasive electrophysiological measure, is desperately needed. We review the current tinnitus assessment methods, the underlying neural correlates of tinnitus, the multiple tinnitus generation theories, and the previously investigated electrophysiological measurements of tinnitus. Finally, we propose an alternate objective test for tinnitus that may be valid in both animal and human subjects.
Collapse
Affiliation(s)
- Emily M Fabrizio-Stover
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University South Carolina, Charleston, SC, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Alice L Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
4
|
Searchfield GD, Sanders PJ, Barde A. A scoping review of the spatial perception of tinnitus and a guideline for the minimum reporting of tinnitus location. J R Soc N Z 2024; 55:501-519. [PMID: 39989657 PMCID: PMC11841106 DOI: 10.1080/03036758.2024.2344781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 02/25/2025]
Abstract
Tinnitus spatial localisation is an essential attribute of tinnitus perception and how it is separated from other ongoing neural activity. A scoping review was undertaken to determine how tinnitus localisation is reported, the role of the perceived spatial location of tinnitus on neurophysiology and if sound presented spatially can change tinnitus perception. Following reading of the full-text articles and including articles from reference lists, 46 articles were included for review. Six themes emerged from the results. 1. Where tinnitus was localised. 2. The effects of tinnitus on localisation. 3. The mechanisms underpinning tinnitus spatial location. 4. Masking. 5. Auditory training. 6. Multisensory training and virtual reality (VR). Tinnitus is much more complex than the often-used description of 'ringing in the ears'. Tinnitus can be heard anywhere in and around the head. Spatial sound presentation and perceptual training approaches may disrupt spatial selective attention to tinnitus and appear as changes in some of the neural networks involved in sound localisation. Where tinnitus is heard is a critical aspect of its perception, but its report, even in studies purporting to study localisation, is too general. A matrix for standardised minimum reporting of tinnitus location is recommended.
Collapse
Affiliation(s)
- Grant D. Searchfield
- School of Population Health, Faculty of medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Philip J. Sanders
- School of Population Health, Faculty of medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- TrueSilence Therapeutics Inc. Atlanta, Georgia, USA
| | - Amit Barde
- School of Population Health, Faculty of medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- TrueSilence Therapeutics Inc. Atlanta, Georgia, USA
| |
Collapse
|
5
|
Yang TH, Xirasagar S, Cheng YF, Chen CS, Lin HC. Increased prevalence of hearing loss, tinnitus and sudden deafness among patients with Sjögren's syndrome. RMD Open 2024; 10:e003308. [PMID: 38242553 PMCID: PMC10806462 DOI: 10.1136/rmdopen-2023-003308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND This study aimed to provide an updated prevalence of hearing loss, tinnitus, vertigo and sudden deafness on patients with Sjögren's syndrome and matched comparison patients. METHODS Data for this study were retrieved from the Taiwan Longitudinal Health Insurance Database and Taiwan's registered catastrophic illness dataset. This study included 20 266 patients with Sjögren's syndrome as the study group and 60 798 propensity score-matched comparison patients as the comparison group. We used multivariable logistic regressions to estimate the ORs and 95% CI for tinnitus, hearing loss, vertigo and sudden deafness among Sjögren's syndrome patients versus comparison patients. RESULTS χ2 tests showed there were statistically significant differences between the study group and comparison group in the prevalence of tinnitus (10.1% vs 6.3%, p<0.001), hearing loss (5.6% vs 3.3%, p<0.001), vertigo (4.6% vs 3.2%, p<0.001) and sudden deafness (0.8% vs 0.6%, p<0.001). Multiple logistic regression revealed that patients with Sjögren's syndrome had a greater tendency to have tinnitus (OR=1.690, 95% CI 1.596-1.788), sudden deafness (OR=1.368, 95% CI 1.137-1.647), hearing loss (OR=1.724, 95% CI 1.598-1.859) and vertigo (OR=1.473, 95% CI 1.360-1.597) relative to comparison patients after adjusting for age, income, geographic location, residential urbanisation level, diabetes, hypertension, hyperlipidaemia and rheumatoid arthritis. CONCLUSIONS We found higher prevalence of hearing loss, vertigo, tinnitus and sudden deafness among patients with Sjögren's syndrome relative to comparison patients. Findings may provide guidance to physicians in counselling patients with Sjögren's syndrome regarding a higher risk of hearing loss, tinnitus, sudden deafness and vertigo.
Collapse
Affiliation(s)
- Tzong-Hann Yang
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei, Taiwan
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health, Taipei, Taiwan
- Department of Otorhinolaryngology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of General Education, University of Taipei, Taipei, Taiwan
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Sudha Xirasagar
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research Center of Data Science on Healthcare Industry, Taipei Medical University, Taipei, Taiwan
| | - Chin-Shyan Chen
- Research Center of Data Science on Healthcare Industry, Taipei Medical University, Taipei, Taiwan
- Department of Economics, National Taipei University, Taipei City, Taiwan
| | - Herng-Ching Lin
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Smith SS, Jahn KN, Sugai JA, Hancock KE, Polley DB. The human pupil and face encode sound affect and provide objective signatures of tinnitus and auditory hypersensitivity disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.571929. [PMID: 38187580 PMCID: PMC10769427 DOI: 10.1101/2023.12.22.571929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Sound is jointly processed along acoustic and emotional dimensions. These dimensions can become distorted and entangled in persons with sensory disorders, producing a spectrum of loudness hypersensitivity, phantom percepts, and - in some cases - debilitating sound aversion. Here, we looked for objective signatures of disordered hearing (DH) in the human face. Pupil dilations and micro facial movement amplitudes scaled with sound valence in neurotypical listeners but not DH participants with chronic tinnitus (phantom ringing) and sound sensitivity. In DH participants, emotionally evocative sounds elicited abnormally large pupil dilations but blunted and invariant facial reactions that jointly provided an accurate prediction of individual tinnitus and hyperacusis questionnaire handicap scores. By contrast, EEG measures of central auditory gain identified steeper neural response growth functions but no association with symptom severity. These findings highlight dysregulated affective sound processing in persons with bothersome tinnitus and sound sensitivity disorders and introduce approaches for their objective measurement.
Collapse
Affiliation(s)
- Samuel S Smith
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
- Lead contact
| | - Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Jenna A Sugai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
| | - Ken E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA, 02114 USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| |
Collapse
|
7
|
Husain FT, Khan RA. Review and Perspective on Brain Bases of Tinnitus. J Assoc Res Otolaryngol 2023; 24:549-562. [PMID: 37919556 PMCID: PMC10752862 DOI: 10.1007/s10162-023-00914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In advancing our understanding of tinnitus, some of the more impactful contributions in the past two decades have come from human brain imaging studies, specifically the idea of both auditory and extra-auditory neural networks that mediate tinnitus. These networks subserve both the perception of tinnitus and the psychological reaction to chronic, continuous tinnitus. In this article, we review particular studies that report on the nodes and links of such neural networks and their inter-network connections. Innovative neuroimaging tools have contributed significantly to the increased understanding of anatomical and functional connections of attention, emotion-processing, and default mode networks in adults with tinnitus. We differentiate between the neural correlates of tinnitus and those of comorbid hearing loss; surprisingly, tinnitus and hearing loss when they co-occur are not necessarily additive in their impact and, in rare cases, additional tinnitus may act to mitigate the consequences of hearing loss alone on the brain. The scale of tinnitus severity also appears to have an impact on brain networks, with some of the alterations typically attributed to tinnitus reaching significance only in the case of bothersome tinnitus. As we learn more about comorbid conditions of tinnitus, such as depression, anxiety, hyperacusis, or even aging, their contributions to the network-level changes observed in tinnitus will need to be parsed out in a manner similar to what is currently being done for hearing loss or severity. Together, such studies advance our understanding of the heterogeneity of tinnitus and will lead to individualized treatment plans.
Collapse
Affiliation(s)
- Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 S. Sixth Street, Champaign, IL, 61820, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
| | - Rafay A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
8
|
Jimoh Z, Marouf A, Zenke J, Leung AWS, Gomaa NA. Functional Brain Regions Linked to Tinnitus Pathology and Compensation During Task Performance: A Systematic Review. Otolaryngol Head Neck Surg 2023; 169:1409-1423. [PMID: 37522290 DOI: 10.1002/ohn.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To systematically search the literature and organize relevant advancements in the connection between tinnitus and the activity of different functional brain regions using functional magnetic resonance imaging (fMRI). DATA SOURCES MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO), Web of Science, ProQuest Dissertations & Theses Global, Cochrane Database of Systematic Reviews, and PROSPERO from inception to April 2022. REVIEW METHODS Studies with adult human subjects who suffer from tinnitus and underwent fMRI to relate specific regions of interest to tinnitus pathology or compensation were included. In addition, fMRI had to be performed with a paradigm of stimuli that would stimulate auditory brain activity. Exclusion criteria included non-English studies, animal studies, and studies that utilized a resting state magnetic resonance imaging or other imaging modalities. RESULTS The auditory cortex may work to dampen the effects of central gain. Results from different studies show variable changes in the Heschl's gyrus (HG), with some showing increased activity and others showing inhibition and volume loss. After controlling for hyperacusis and other confounders, tinnitus does not seem to influence the inferior colliculus (IC) activation. However, there is decreased connectivity between the auditory cortex and IC. The cochlear nucleus (CN) generally shows increased activation in tinnitus patients. fMRI evidence indicates significant inhibition of thalamic gating. Activating the thalamus may be of important therapeutic potential. CONCLUSION Patients with tinnitus have significantly altered neuronal firing patterns, especially within the auditory network, when compared to individuals without tinnitus. Tinnitus and hyperacusis commonly coexist, making differentiation of the effects of these 2 phenomena frequently difficult.
Collapse
Affiliation(s)
- Zaharadeen Jimoh
- Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Azmi Marouf
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Julianna Zenke
- Division of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ada W S Leung
- Department of Occupational Therapy, Neuroscience, and Mental Health Institute, Faculty of Rehabilitation Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nahla A Gomaa
- Division of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Elmer S, Schmitt R, Giroud N, Meyer M. The neuroanatomical hallmarks of chronic tinnitus in comorbidity with pure-tone hearing loss. Brain Struct Funct 2023; 228:1511-1534. [PMID: 37349539 PMCID: PMC10335971 DOI: 10.1007/s00429-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Tinnitus is one of the main hearing impairments often associated with pure-tone hearing loss, and typically manifested in the perception of phantom sounds. Nevertheless, tinnitus has traditionally been studied in isolation without necessarily considering auditory ghosting and hearing loss as part of the same syndrome. Hence, in the present neuroanatomical study, we attempted to pave the way toward a better understanding of the tinnitus syndrome, and compared two groups of almost perfectly matched individuals with (TIHL) and without (NTHL) pure-tone tinnitus, but both characterized by pure-tone hearing loss. The two groups were homogenized in terms of sample size, age, gender, handedness, education, and hearing loss. Furthermore, since the assessment of pure-tone hearing thresholds alone is not sufficient to describe the full spectrum of hearing abilities, the two groups were also harmonized for supra-threshold hearing estimates which were collected using temporal compression, frequency selectivity und speech-in-noise tasks. Regions-of-interest (ROI) analyses based on key brain structures identified in previous neuroimaging studies showed that the TIHL group exhibited increased cortical volume (CV) and surface area (CSA) of the right supramarginal gyrus and posterior planum temporale (PT) as well as CSA of the left middle-anterior part of the superior temporal sulcus (STS). The TIHL group also demonstrated larger volumes of the left amygdala and of the left head and body of the hippocampus. Notably, vertex-wise multiple linear regression analyses additionally brought to light that CSA of a specific cluster, which was located in the left middle-anterior part of the STS and overlapped with the one found to be significant in the between-group analyses, was positively associated with tinnitus distress level. Furthermore, distress also positively correlated with CSA of gray matter vertices in the right dorsal prefrontal cortex and the right posterior STS, whereas tinnitus duration was positively associated with CSA and CV of the right angular gyrus (AG) and posterior part of the STS. These results provide new insights into the critical gray matter architecture of the tinnitus syndrome matrix responsible for the emergence, maintenance and distress of auditory phantom sensations.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Raffael Schmitt
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| |
Collapse
|
10
|
Schultheiβ H, Zulfiqar I, Verardo C, Jolivet RB, Moerel M. Modelling homeostatic plasticity in the auditory cortex results in neural signatures of tinnitus. Neuroimage 2023; 271:119987. [PMID: 36940510 DOI: 10.1016/j.neuroimage.2023.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 02/25/2023] [Indexed: 03/22/2023] Open
Abstract
Tinnitus is a clinical condition where a sound is perceived without an external sound source. Homeostatic plasticity (HSP), serving to increase neural activity as compensation for the reduced input to the auditory pathway after hearing loss, has been proposed as a mechanism underlying tinnitus. In support, animal models of tinnitus show evidence of increased neural activity after hearing loss, including increased spontaneous and sound-driven firing rate, as well as increased neural noise throughout the auditory processing pathway. Bridging these findings to human tinnitus, however, has proven to be challenging. Here we implement hearing loss-induced HSP in a Wilson-Cowan Cortical Model of the auditory cortex to predict how homeostatic principles operating at the microscale translate to the meso- to macroscale accessible through human neuroimaging. We observed HSP-induced response changes in the model that were previously proposed as neural signatures of tinnitus, but that have also been reported as correlates of hearing loss and hyperacusis. As expected, HSP increased spontaneous and sound-driven responsiveness in hearing-loss affected frequency channels of the model. We furthermore observed evidence of increased neural noise and the appearance of spatiotemporal modulations in neural activity, which we discuss in light of recent human neuroimaging findings. Our computational model makes quantitative predictions that require experimental validation, and may thereby serve as the basis of future human studies of hearing loss, tinnitus, and hyperacusis.
Collapse
Affiliation(s)
- Hannah Schultheiβ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Master Systems Biology, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Isma Zulfiqar
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Claudio Verardo
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Renaud B Jolivet
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Watson N, Schaper FLWVJ, Jabbour S, Sadler S, Bain PA, Fox MD, Naples JG. Is There an Optimal Repetitive Transcranial Magnetic Stimulation Target to Treat Chronic Tinnitus? Otolaryngol Head Neck Surg 2023; 168:300-306. [PMID: 35671136 DOI: 10.1177/01945998221102082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic tinnitus is a clinical symptom that affects 10% to 15% of the adult population. Repetitive transcranial magnetic stimulation (rTMS) is a promising treatment, but significant heterogeneity exists in the treatment outcomes and stimulation parameters. In this study, we perform a qualitative systematic review to determine if there is an optimal rTMS site to treat tinnitus. DATA SOURCES A literature search was performed by searching the MEDLINE, Embase, Web of Science, and Cochrane databases. REVIEW METHODS Sham-controlled studies in adults were included that contained >10 patients with tinnitus for >3 months and utilized 10 to 20 electroencephalography coordinates. Study outcomes were considered positive if the treatment arm reported a significant reduction in the primary tinnitus score relative to sham. RESULTS There were 1211 studies screened. Nineteen studies met the inclusion criteria, and 8 unique stimulation sites were reported. Studies had 53.7 ± 46.0 patients (mean ± SD). The mean duration of follow-up was 10.3 ± 9.6 weeks. Positive outcomes regarding tinnitus suppression were reported in 5 of 5 (100%) studies stimulating the temporoparietal junction midway between T3 and P3 or between T4 and P4. Tinnitus suppression at all other sites was less frequent with a combined success rate of only 8 of 14 (57.1%). CONCLUSION Significant heterogeneity exists in the literature in regard to the optimal transcranial magnetic stimulation target. These preliminary findings suggest that the temporoparietal junction midway between T3 and P3 or T4 and P4 is a promising nonauditory rTMS target in the setting of chronic tinnitus. Future research should elucidate the effectiveness of this site for tinnitus suppression.
Collapse
Affiliation(s)
| | | | - Sandrine Jabbour
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Paul A Bain
- Countway Library of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Fox
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James G Naples
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Jastreboff PJ, Jastreboff MM. The neurophysiological approach to misophonia: Theory and treatment. Front Neurosci 2023; 17:895574. [PMID: 37034168 PMCID: PMC10076672 DOI: 10.3389/fnins.2023.895574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Clinical observations of hundreds of patients who exhibited decreased tolerance to sound showed that many of them could not be diagnosed as having hyperacusis when negative reactions to a sound depend only on its physical characteristics. In the majority of these patients, the physical characteristics of bothersome sounds were secondary, and patients were able to tolerate other sounds with levels higher than sounds bothersome for them. The dominant feature determining the presence and strength of negative reactions are specific to a given patient's patterns and meaning of bothersome sounds. Moreover, negative reactions frequently depend on the situation in which the offensive sound is presented or by whom it is produced. Importantly, physiological and emotional reactions to bothersome sounds are very similar (even identical) for both hyperacusis and misophonia, so reactions cannot be used to diagnose and differentiate them. To label this non-reported phenomenon, we coined the term misophonia in 2001. Incorporating clinical observations into the framework of knowledge of brain functions allowed us to propose a neurophysiological model for misophonia. The observation that the physical characterization of misophonic trigger was secondary and frequently irrelevant suggested that the auditory pathways are working in identical manner in people with as in without misophonia. Descriptions of negative reactions indicated that the limbic and sympathetic parts of the autonomic nervous systems are involved but without manifestations of general malfunction of these systems. Patients with misophonia could not control internal emotional reactions (even when fully realizing that these reactions are disproportionate to benign sounds evoking them) suggesting that subconscious, conditioned reflexes linking the auditory system with other systems in the brain are the core mechanisms of misophonia. Consequently, the strength of functional connections between various systems in the brain plays a dominant role in misophonia, and the functional properties of the individual systems may be perfectly within the norms. Based on the postulated model, we proposed a treatment for misophonia, focused on the extinction of conditioned reflexes linking the auditory system with other systems in the brain. Treatment consists of specific counseling and sound therapy. It has been used for over 20 years with a published success rate of 83%.
Collapse
Affiliation(s)
- Pawel J. Jastreboff
- Department Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Jastreboff Hearing Disorders Foundation (JHDF), Inc., Ellicott City, MD, United States
- *Correspondence: Pawel J. Jastreboff
| | | |
Collapse
|
13
|
Jacxsens L, De Pauw J, Cardon E, van der Wal A, Jacquemin L, Gilles A, Michiels S, Van Rompaey V, Lammers MJW, De Hertogh W. Brainstem evoked auditory potentials in tinnitus: A best-evidence synthesis and meta-analysis. Front Neurol 2022; 13:941876. [PMID: 36071905 PMCID: PMC9441610 DOI: 10.3389/fneur.2022.941876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Accumulating evidence suggests a role of the brainstem in tinnitus generation and modulation. Several studies in chronic tinnitus patients have reported latency and amplitude changes of the different peaks of the auditory brainstem response, possibly reflecting neural changes or altered activity. The aim of the systematic review was to assess if alterations within the brainstem of chronic tinnitus patients are reflected in short- and middle-latency auditory evoked potentials (AEPs). Methods A systematic review was performed and reported according to the PRISMA guidelines. Studies evaluating short- and middle-latency AEPs in tinnitus patients and controls were included. Two independent reviewers conducted the study selection, data extraction, and risk of bias assessment. Meta-analysis was performed using a multivariate meta-analytic model. Results Twenty-seven cross-sectional studies were included. Multivariate meta-analysis revealed that in tinnitus patients with normal hearing, significantly longer latencies of auditory brainstem response (ABR) waves I (SMD = 0.66 ms, p < 0.001), III (SMD = 0.43 ms, p < 0.001), and V (SMD = 0.47 ms, p < 0.01) are present. The results regarding possible changes in middle-latency responses (MLRs) and frequency-following responses (FFRs) were inconclusive. Discussion The discovered changes in short-latency AEPs reflect alterations at brainstem level in tinnitus patients. More specifically, the prolonged ABR latencies could possibly be explained by high frequency sensorineural hearing loss, or other modulating factors such as cochlear synaptopathy or somatosensory tinnitus generators. The question whether middle-latency AEP changes, representing subcortical level of the auditory pathway, are present in tinnitus still remains unanswered. Future studies should identify and correctly deal with confounding factors, such as age, gender and the presence of somatosensory tinnitus components. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021243687, PROSPERO [CRD42021243687].
Collapse
Affiliation(s)
- Laura Jacxsens
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Joke De Pauw
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie Cardon
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annemarie van der Wal
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, Netherlands
| | - Laure Jacquemin
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annick Gilles
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Sarah Michiels
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Faculty of Rehabilitation Sciences, REVAL, University of Hasselt, Hasselt, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc J W Lammers
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Willem De Hertogh
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Ultrasound-Guided Occipital Nerve Blocks to Reduce Tinnitus-Associated Otalgia: A Case Series. A A Pract 2022; 16:e01552. [PMID: 34989354 DOI: 10.1213/xaa.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ear pain is mediated by cranial nerves V, IX, and X, as well as branches of C2 and C3, including the occipital nerve. Occipital neuralgia may play a role in the development or worsening of tinnitus and otalgia. The authors reviewed and report 33 cases of ultrasound-guided occipital nerve blocks in patients with tinnitus and otalgia, with postprocedure follow-up intervals of up to 2 years. We found that greater occipital nerve blocks may be a valuable treatment method for these patients.
Collapse
|
15
|
Hedayati R, Hekmat S, Mahmoudian S, Teimourinejad F, Malek H, Yaghoobi N, Rastgoo F, Firuzabadi H, Kalantari F. Alterations in brain single-photon emission computed tomography perfusion pattern pre- and post-transcranial magnetic stimulation in tinnitus participants. INDIAN JOURNAL OF OTOLOGY 2022. [DOI: 10.4103/indianjotol.indianjotol_4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Salvi R, Radziwon K, Manohar S, Auerbach B, Ding D, Liu X, Lau C, Chen YC, Chen GD. Review: Neural Mechanisms of Tinnitus and Hyperacusis in Acute Drug-Induced Ototoxicity. Am J Audiol 2021; 30:901-915. [PMID: 33465315 DOI: 10.1044/2020_aja-20-00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Tinnitus and hyperacusis are debilitating conditions often associated with age-, noise-, and drug-induced hearing loss. Because of their subjective nature, the neural mechanisms that give rise to tinnitus and hyperacusis are poorly understood. Over the past few decades, considerable progress has been made in deciphering the biological bases for these disorders using animal models. Method Important advances in understanding the biological bases of tinnitus and hyperacusis have come from studies in which tinnitus and hyperacusis are consistently induced with a high dose of salicylate, the active ingredient in aspirin. Results Salicylate induced a transient hearing loss characterized by a reduction in otoacoustic emissions, a moderate cochlear threshold shift, and a large reduction in the neural output of the cochlea. As the weak cochlear neural signals were relayed up the auditory pathway, they were progressively amplified so that the suprathreshold neural responses in the auditory cortex were much larger than normal. Excessive central gain (neural amplification), presumably resulting from diminished inhibition, is believed to contribute to hyperacusis and tinnitus. Salicylate also increased corticosterone stress hormone levels. Functional imaging studies indicated that salicylate increased spontaneous activity and enhanced functional connectivity between structures in the central auditory pathway and regions of the brain associated with arousal (reticular formation), emotion (amygdala), memory/spatial navigation (hippocampus), motor planning (cerebellum), and motor control (caudate/putamen). Conclusion These results suggest that tinnitus and hyperacusis arise from aberrant neural signaling in a complex neural network that includes both auditory and nonauditory structures.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Kelly Radziwon
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Senthilvelan Manohar
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Ben Auerbach
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Dalian Ding
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Xiaopeng Liu
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| | - Condon Lau
- Department of Physics, City University of Hong Kong
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China
| | - Guang-Di Chen
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo
| |
Collapse
|
17
|
Klein A, Schankin CJ. Visual snow syndrome, the spectrum of perceptual disorders, and migraine as a common risk factor: A narrative review. Headache 2021; 61:1306-1313. [PMID: 34570907 PMCID: PMC9293285 DOI: 10.1111/head.14213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this narrative review is to explore the relationship between visual snow syndrome (VSS), migraine, and a group of other perceptual disorders. BACKGROUND VSS is characterized by visual snow and additional visual and nonvisual disturbances. The clinical picture suggests a hypersensitivity to internal and external stimuli. Imaging and electrophysiological findings indicate a hyperexcitability of the primary and secondary visual areas of the brain possibly due to an impairment of inhibitory feedback mechanisms. Migraine is the most frequent comorbidity. Epidemiological and clinical studies indicate that other perceptual disorders, such as tinnitus, fibromyalgia, and dizziness, are associated with VSS. Clinical overlaps and parallels in pathophysiology might exist in relation to migraine. METHODS We performed a PubMed and Google Scholar search with the following terms: visual snow syndrome, entoptic phenomenon, fibromyalgia, tinnitus, migraine, dizziness, persistent postural-perceptual dizziness (PPPD), comorbidities, symptoms, pathophysiology, thalamus, thalamocortical dysrhythmia, and salience network. RESULTS VSS, fibromyalgia, tinnitus, and PPPD share evidence of a central disturbance in the processing of different stimuli (visual, somatosensory/pain, acoustic, and vestibular) that might lead to hypersensitivity. Imaging and electrophysiological findings hint toward network disorders involving the sensory networks and other large-scale networks involved in the management of attention and emotional processing. There are clinical and epidemiological overlaps between these disorders. Similarly, migraine exhibits a multisensory hypersensitivity even in the interictal state with fluctuation during the migraine cycle. All the described perceptual disorders are associated with migraine suggesting that having migraine, that is, a disorder of sensory processing, is a common link. CONCLUSION VSS, PPPD, fibromyalgia, and chronic tinnitus might lie on a spectrum of perceptual disorders with similar pathophysiological mechanisms and the common risk factor migraine. Understanding the underlying network disturbances might give insights into how to improve these currently very difficult to treat conditions.
Collapse
Affiliation(s)
- Antonia Klein
- Department of NeurologyInselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Christoph J. Schankin
- Department of NeurologyInselspitalBern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
18
|
Krishnan A, Suresh CH, Gandour JT. Cortical hemisphere preference and brainstem ear asymmetry reflect experience-dependent functional modulation of pitch. BRAIN AND LANGUAGE 2021; 221:104995. [PMID: 34303110 PMCID: PMC8559596 DOI: 10.1016/j.bandl.2021.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Temporal attributes of pitch processing at cortical and subcortical levels are differentially weighted and well-coordinated. The question is whether language experience induces functional modulation of hemispheric preference complemented by brainstem ear symmetry for pitch processing. Brainstem frequency-following and cortical pitch responses were recorded concurrently from Mandarin and English participants. A Mandarin syllable with a rising pitch contour was presented to both ears with monaural stimulation. At the cortical level, left ear stimulation in the Chinese group revealed an experience-dependent response for pitch processing in the right hemisphere, consistent with a functionalaccount. The English group revealed a contralateral hemisphere preference consistent with a structuralaccount. At the brainstem level, Chinese participants showed a functional leftward ear asymmetry, whereas English were consistent with a structural account. Overall, language experience modulates both cortical hemispheric preference and brainstem ear asymmetry in a complementary manner to optimize processing of temporal attributes of pitch.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA.
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA; Department of Communication Disorders, California State, University, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Dewey RS, Hall DA, Plack CJ, Francis ST. Comparison of continuous sampling with active noise cancelation and sparse sampling for cortical and subcortical auditory functional MRI. Magn Reson Med 2021; 86:2577-2588. [PMID: 34196020 DOI: 10.1002/mrm.28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Detecting sound-related activity using functional MRI requires the auditory stimulus to be more salient than the intense background scanner acoustic noise. Various strategies can reduce the impact of scanner acoustic noise, including "sparse" temporal sampling with single/clustered acquisitions providing intervals without any background scanner acoustic noise, or active noise cancelation (ANC) during "continuous" temporal sampling, which generates an acoustic signal that adds destructively to the scanner acoustic noise, substantially reducing the acoustic energy at the participant's eardrum. Furthermore, multiband functional MRI allows multiple slices to be collected simultaneously, thereby reducing scanner acoustic noise in a given sampling period. METHODS Isotropic multiband functional MRI (1.5 mm) with sparse sampling (effective TR = 9000 ms, acquisition duration = 1962 ms) and continuous sampling (TR = 2000 ms) with ANC were compared in 15 normally hearing participants. A sustained broadband noise stimulus was presented to drive activation of both sustained and transient auditory responses within subcortical and cortical auditory regions. RESULTS Robust broadband noise-related activity was detected throughout the auditory pathways. Continuous sampling with ANC was found to give a statistically significant advantage over sparse sampling for the detection of the transient (onset) stimulus responses, particularly in the auditory cortex (P < .001) and inferior colliculus (P < .001), whereas gains provided by sparse over continuous ANC for detecting offset and sustained responses were marginal (p ~ 0.05 in superior olivary complex, inferior colliculus, medial geniculate body, and auditory cortex). CONCLUSIONS Sparse and continuous ANC multiband functional MRI protocols provide differing advantages for observing the transient (onset and offset) and sustained stimulus responses.
Collapse
Affiliation(s)
- Rebecca S Dewey
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,National Institute for Health Research Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Trakolis L, Bender B, Ebner FH, Ernemann U, Tatagiba M, Naros G. Cortical and subcortical gray matter changes in patients with chronic tinnitus sustaining after vestibular schwannoma surgery. Sci Rep 2021; 11:8411. [PMID: 33863965 PMCID: PMC8052351 DOI: 10.1038/s41598-021-87915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Tinnitus is attributed to partial sensory deafferentation resulting in a central maladaptive neuroplasticity. Unfortunately, the agent of deafferentation is usually unknown or irreversible. In patients with unilateral vestibular schwannoma (VS), however, the auditory nerve is affected by a benign tumor. Hence, removal of the tumor can cease the tinnitus. In turn, sustaining complaints after surgery indicate cortical neuroplasticity. The present study is a cross sectional study which aims to track cortical structural changes by surface-based morphometry in 46 VS patients with sustained (i.e. centralized) or ceased (i.e. peripheral) tinnitus after surgery. A volumetric analysis of cortical and subcortical gray matter (GM) anatomy was performed on preoperative high-resolution MRI and related to the presence of hearing impairment, pre- and/or postoperative tinnitus. Patients with sustained (i.e. chronic) tinnitus showed an increased GM volume of the bilateral caudate nucleus, the contralateral superior colliculus, the middle frontal and middle temporal gyrus, the fusiform gyrus as well as the ipsilateral pars orbitalis when compared to those patients in whom tinnitus ceased postoperatively. Chronic tinnitus in VS patients is associated with characteristic structural changes in frontal, temporal and subcortical areas. Notably, a significant GM change of the caudate nucleus was detected providing further support for the striatal gaiting model of tinnitus.
Collapse
Affiliation(s)
- Leonidas Trakolis
- grid.411544.10000 0001 0196 8249Department of Neurosurgery and Neurotechnology, Eberhard Karls University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Benjamin Bender
- grid.411544.10000 0001 0196 8249Department of Diagnostic and Interventional Neuroradiology, Eberhardt Karls University Hospital, Tuebingen, Germany
| | - Florian H. Ebner
- grid.476313.4Department of Neurosurgery, Alfried Krupp Hospital, Essen, Germany
| | - Ulrike Ernemann
- grid.411544.10000 0001 0196 8249Department of Diagnostic and Interventional Neuroradiology, Eberhardt Karls University Hospital, Tuebingen, Germany
| | - Marcos Tatagiba
- grid.411544.10000 0001 0196 8249Department of Neurosurgery and Neurotechnology, Eberhard Karls University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Georgios Naros
- grid.411544.10000 0001 0196 8249Department of Neurosurgery and Neurotechnology, Eberhard Karls University Hospital, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| |
Collapse
|
21
|
Ahmed S, Mohan A, Yoo HB, To WT, Kovacs S, Sunaert S, De Ridder D, Vanneste S. Structural correlates of the audiological and emotional components of chronic tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 262:487-509. [PMID: 33931193 DOI: 10.1016/bs.pbr.2021.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective is to investigate white matter tracts, more specifically the arcuate fasciculus and acoustic radiation, in tinnitus and assess their relationship with distress, loudness and hearing loss. DTI images were acquired for 58 tinnitus patients and 65 control subjects. Deterministic tractography was first performed to visualize the arcuate fasciculus and acoustic radiation tracts bilaterally and to calculate tract density, fractional anisotropy, radial diffusivity, and axial diffusivity for tinnitus and control subjects. Tinnitus patients had a significantly reduced tract density compared to controls in both tracts of interest. They also exhibited increased axial diffusivity in the left acoustic radiation, as well as increased radial diffusivity in the left arcuate fasciculus, and both the left and right acoustic radiation. Furthermore, they exhibited decreased fractional anisotropy in the left arcuate fasciculus, as well as the left and right acoustic radiation tracts. Partial correlation analysis showed: (1) a negative correlation between arcuate fasciculus tract density and tinnitus distress, (2) a negative correlation between acoustic radiation tract density and hearing loss, (3) a negative correlation between acoustic radiation tract density and loudness, (4) a positive correlation between left arcuate fasciculus and tinnitus distress for radial diffusivity, (5) a negative correlation between left arcuate fasciculus and tinnitus distress for fractional anisotropy, (6) a positive correlation between left and right acoustic radiation and hearing loss for radial diffusivity, (7) No correlation between any of the white matter characteristics and tinnitus loudness. Structural alterations in the acoustic radiation and arcuate fasciculus correlate with hearing loss and distress in tinnitus but not tinnitus loudness showing that loudness is a more functional correlate of the disorder which does not manifest structurally.
Collapse
Affiliation(s)
- Shaheen Ahmed
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Hye Bin Yoo
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Wing Ting To
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Silvia Kovacs
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Shoushtarian M, Alizadehsani R, Khosravi A, Acevedo N, McKay CM, Nahavandi S, Fallon JB. Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning. PLoS One 2020; 15:e0241695. [PMID: 33206675 PMCID: PMC7673524 DOI: 10.1371/journal.pone.0241695] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic tinnitus is a debilitating condition which affects 10-20% of adults and can severely impact their quality of life. Currently there is no objective measure of tinnitus that can be used clinically. Clinical assessment of the condition uses subjective feedback from individuals which is not always reliable. We investigated the sensitivity of functional near-infrared spectroscopy (fNIRS) to differentiate individuals with and without tinnitus and to identify fNIRS features associated with subjective ratings of tinnitus severity. We recorded fNIRS signals in the resting state and in response to auditory or visual stimuli from 25 individuals with chronic tinnitus and 21 controls matched for age and hearing loss. Severity of tinnitus was rated using the Tinnitus Handicap Inventory and subjective ratings of tinnitus loudness and annoyance were measured on a visual analogue scale. Following statistical group comparisons, machine learning methods including feature extraction and classification were applied to the fNIRS features to classify patients with tinnitus and controls and differentiate tinnitus at different severity levels. Resting state measures of connectivity between temporal regions and frontal and occipital regions were significantly higher in patients with tinnitus compared to controls. In the tinnitus group, temporal-occipital connectivity showed a significant increase with subject ratings of loudness. Also in this group, both visual and auditory evoked responses were significantly reduced in the visual and auditory regions of interest respectively. Naïve Bayes classifiers were able to classify patients with tinnitus from controls with an accuracy of 78.3%. An accuracy of 87.32% was achieved using Neural Networks to differentiate patients with slight/ mild versus moderate/ severe tinnitus. Our findings show the feasibility of using fNIRS and machine learning to develop an objective measure of tinnitus. Such a measure would greatly benefit clinicians and patients by providing a tool to objectively assess new treatments and patients' treatment progress.
Collapse
Affiliation(s)
- Mehrnaz Shoushtarian
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Melbourne, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Melbourne, Australia
| | - Nicola Acevedo
- The Bionics Institute, East Melbourne, Victoria, Australia
| | - Colette M. McKay
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Melbourne, Australia
| | - James B. Fallon
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Cheung SW, Racine CA, Henderson-Sabes J, Demopoulos C, Molinaro AM, Heath S, Nagarajan SS, Bourne AL, Rietcheck JE, Wang SS, Larson PS. Phase I trial of caudate deep brain stimulation for treatment-resistant tinnitus. J Neurosurg 2020; 133:992-1001. [PMID: 31553940 PMCID: PMC7089839 DOI: 10.3171/2019.4.jns19347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/11/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The objective of this open-label, nonrandomized trial was to evaluate the efficacy and safety of bilateral caudate nucleus deep brain stimulation (DBS) for treatment-resistant tinnitus. METHODS Six participants underwent DBS electrode implantation. One participant was removed from the study for suicidality unrelated to brain stimulation. Participants underwent a stimulation optimization period that ranged from 5 to 13 months, during which the most promising stimulation parameters for tinnitus reduction for each individual were determined. These individual optimal stimulation parameters were then used during 24 weeks of continuous caudate stimulation to reach the endpoint. The primary outcome for efficacy was the Tinnitus Functional Index (TFI), and executive function (EF) safety was a composite z-score from multiple neuropsychological tests (EF score). The secondary outcome for efficacy was the Tinnitus Handicap Inventory (THI); for neuropsychiatric safety it was the Frontal Systems Behavior Scale (FrSBe), and for hearing safety it was pure tone audiometry at 0.5, 1, 2, 3, 4, and 6 kHz and word recognition score (WRS). Other monitored outcomes included surgery- and device-related adverse events (AEs). Five participants provided full analyzable data sets. Primary and secondary outcomes were based on differences in measurements between baseline and endpoint. RESULTS The treatment effect size of caudate DBS for tinnitus was assessed by TFI [mean (SE), 23.3 (12.4)] and THI [30.8 (10.4)] scores, both of which were statistically significant (Wilcoxon signed-rank test, 1-tailed; alpha = 0.05). Based on clinically significant treatment response categorical analysis, there were 3 responders determined by TFI (≥ 13-point decrease) and 4 by THI (≥ 20-point decrease) scores. Safety outcomes according to EF score, FrSBe, audiometric thresholds, and WRS showed no significant change with continuous caudate stimulation. Surgery-related and device-related AEs were expected, transient, and reversible. There was only one serious AE, a suicide attempt unrelated to caudate neuromodulation in a participant in whom stimulation was in the off mode for 2 months prior to the event. CONCLUSIONS Bilateral caudate nucleus neuromodulation by DBS for severe, refractory tinnitus in this phase I trial showed very encouraging results. Primary and secondary outcomes revealed a highly variable treatment effect size and 60%-80% treatment response rate for clinically significant benefit, and no safety concerns. The design of a phase II trial may benefit from targeting refinement for final DBS lead placement to decrease the duration of the stimulation optimization period and to increase treatment effect size uniformity.Clinical trial registration no.: NCT01988688 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Steven W. Cheung
- Department of Otolaryngology – Head and Neck Surgery, UCSF, San Francisco, USA
- Surgical Services, Veterans Affairs Health Care System, San Francisco, USA
| | | | | | - Carly Demopoulos
- Department of Psychiatry, UCSF, San Francisco, USA
- Department of Department of Radiology and Biomedical Imaging, UCSF, San Francisco, USA
| | | | - Susan Heath
- Surgical Services, Veterans Affairs Health Care System, San Francisco, USA
| | - Srikantan S. Nagarajan
- Department of Otolaryngology – Head and Neck Surgery, UCSF, San Francisco, USA
- Department of Department of Radiology and Biomedical Imaging, UCSF, San Francisco, USA
| | - Andrea L. Bourne
- Audiology and Speech Pathology Service, Veterans Affairs Health Care System, San Francisco, USA
| | - John E. Rietcheck
- Audiology and Speech Pathology Service, Veterans Affairs Health Care System, San Francisco, USA
| | | | - Paul S. Larson
- Surgical Services, Veterans Affairs Health Care System, San Francisco, USA
- Department of Neurological Surgery, UCSF, San Francisco, USA
| |
Collapse
|
24
|
Ibarra-Zarate D, Alonso-Valerdi LM. Acoustic therapies for tinnitus: The basis and the electroencephalographic evaluation. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Wong E, Radziwon K, Chen GD, Liu X, Manno FA, Manno SH, Auerbach B, Wu EX, Salvi R, Lau C. Functional magnetic resonance imaging of enhanced central auditory gain and electrophysiological correlates in a behavioral model of hyperacusis. Hear Res 2020; 389:107908. [PMID: 32062293 DOI: 10.1016/j.heares.2020.107908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 02/02/2020] [Indexed: 01/24/2023]
Abstract
Hyperacusis is a debilitating hearing condition in which normal everyday sounds are perceived as exceedingly loud, annoying, aversive or even painful. The prevalence of hyperacusis approaches 10%, making it an important, but understudied medical condition. To noninvasively identify the neural correlates of hyperacusis in an animal model, we used sound-evoked functional magnetic resonance imaging (fMRI) to locate regions of abnormal activity in the central nervous system of rats with behavioral evidence of hyperacusis induced with an ototoxic drug (sodium salicylate, 250 mg/kg, i.p.). Reaction time-intensity measures of loudness-growth revealed behavioral evidence of salicylate-induced hyperacusis at high intensities. fMRI revealed significantly enhanced sound-evoked responses in the auditory cortex (AC) to 80 dB SPL tone bursts presented at 8 and 16 kHz. Sound-evoked responses in the inferior colliculus (IC) were also enhanced, but to a lesser extent. To confirm the main results, electrophysiological recordings of spike discharges from multi-unit clusters were obtained from the central auditory pathway. Salicylate significantly enhanced tone-evoked spike-discharges from multi-unit clusters in the AC from 4 to 30 kHz at intensities ≥60 dB SPL; less enhancement occurred in the medial geniculate body (MGB), and even less in the IC. Our results demonstrate for the first time that non-invasive sound-evoked fMRI can be used to identify regions of neural hyperactivity throughout the brain in an animal model of hyperacusis.
Collapse
Affiliation(s)
- Eddie Wong
- Department of Physics, City University of Hong Kong, Hong Kong, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Kelly Radziwon
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Xiaopeng Liu
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Francis Am Manno
- Department of Physics, City University of Hong Kong, Hong Kong, China; School of Biomedical Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Sinai Hc Manno
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Benjamin Auerbach
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
| | - Richard Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, SUNY at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC.
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Verma R, Jha A, Singh S. Functional Near-Infrared Spectroscopy to Probe tDCS-Induced Cortical Functioning Changes in Tinnitus. J Int Adv Otol 2020; 15:321-325. [PMID: 31347512 DOI: 10.5152/iao.2019.6022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are limited treatment options for successful management of tinnitus, which is highly prevalent worldwide. The pathogenetic role of auditory cortex activation changes in tinnitus has been reported by various functional studies that suggest that the emerging neuromodulation techniques may pave way toward better treatment response. The current case report depicts the use of functional near-infrared spectroscopy (fNIRS) based on the assessment of improvement in auditory cortex functioning in chronic tinnitus by transcranial direct current stimulation (tDCS).
Collapse
Affiliation(s)
- Rohit Verma
- Department of Psychiatry, Brain Stimulation Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Jha
- Department of Psychiatry, Brain Stimulation Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Shuchita Singh
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Berlot E, Arts R, Smit J, George E, Gulban OF, Moerel M, Stokroos R, Formisano E, De Martino F. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas. NEUROIMAGE-CLINICAL 2020; 25:102166. [PMID: 31958686 PMCID: PMC6970183 DOI: 10.1016/j.nicl.2020.102166] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
Tinnitus is a clinical condition defined by hearing a sound in the absence of an objective source. Early experiments in animal models have suggested that tinnitus stems from an alteration of processing in the auditory system. However, translating these results to humans has proven challenging. One limiting factor has been the insufficient spatial resolution of non-invasive measurement techniques to investigate responses in subcortical auditory nuclei, like the inferior colliculus and the medial geniculate body (MGB). Here we employed ultra-high field functional magnetic resonance imaging (UHF-fMRI) at 7 Tesla to investigate the frequency-specific processing in sub-cortical and cortical regions in a cohort of six tinnitus patients and six hearing loss matched controls. We used task-based fMRI to perform tonotopic mapping and compared the magnitude and tuning of frequency-specific responses between the two groups. Additionally, we used resting-state fMRI to investigate the functional connectivity. Our results indicate frequency-unspecific reductions in the selectivity of frequency tuning that start at the level of the MGB and continue in the auditory cortex, as well as reduced thalamocortical and cortico-cortical connectivity with tinnitus. These findings suggest that tinnitus may be associated with reduced inhibition in the auditory pathway, potentially leading to increased neural noise and reduced functional connectivity. Moreover, these results indicate the relevance of high spatial resolution UHF-fMRI for the investigation of the role of sub-cortical auditory regions in tinnitus.
Collapse
Affiliation(s)
- Eva Berlot
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; The Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Remo Arts
- Cochlear Benelux NV, Mechelen Campus - Industrie Noord, Schaliënhoevedreef 20, Building I, Mechelen B-2800, Belgium
| | - Jasper Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Erwin George
- Department of Ear Nose and Throat /Audiology, School for Mental Health and Neuroscience (MHENS), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Robert Stokroos
- UMC Utrecht, department of Otolaryngology- Head and Neck Surgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
28
|
Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, Hall DA. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds. Neuroimage 2020; 204:116239. [PMID: 31586673 PMCID: PMC6905154 DOI: 10.1016/j.neuroimage.2019.116239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 10/26/2022] Open
Abstract
In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
Collapse
Affiliation(s)
- Rebecca S Dewey
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, NG7 2UH, UK.
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK.
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness (ManCAD), University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK.
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness (ManCAD), University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK.
| | - Rebecca E Millman
- Manchester Centre for Audiology and Deafness (ManCAD), University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK.
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness (ManCAD), University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK; Department of Psychology, Lancaster University, LA1 4YF, UK.
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, NG7 2UH, UK; University of Nottingham Malaysia, Jalan Broga, 43500, Semeniyh, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Shore SE, Wu C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019; 103:8-20. [PMID: 31271756 DOI: 10.1016/j.neuron.2019.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 01/21/2023]
Abstract
Tinnitus, sound perception in the absence of physical stimuli, occurs in 15% of the population and is the top-reported disability for soldiers after combat. Noise overexposure is a major factor associated with tinnitus but does not always lead to tinnitus. Furthermore, people with normal audiograms can get tinnitus. In animal models, equivalent cochlear damage occurs in animals with and without behavioral evidence of tinnitus. But cochlear-nerve-recipient neurons in the brainstem demonstrate distinct, synchronized spontaneous firing patterns only in animals that develop tinnitus, driving activity in central brain regions and ultimately giving rise to phantom perception. Examining tinnitus-specific changes in single-cell populations enables us to begin to distinguish neural changes due to tinnitus from those that are due to hearing loss.
Collapse
Affiliation(s)
- Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Vanneste S, Kilgard MP, Engineer CT. Pairing vagus nerve stimulation with tones drives plasticity across the auditory pathway. J Neurophysiol 2019; 122:659-671. [PMID: 31215351 DOI: 10.1152/jn.00832.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway. In this study, we paired VNS with the presentation of a 9-kHz tone 300 times a day for 20 days. We recorded neural responses to tones from 2,950 sites in the inferior colliculus (IC), A1, anterior auditory field (AAF), and posterior auditory field (PAF) 24 h after the last pairing session in anesthetized rats. We found that VNS-tone pairing increased the percentage of IC, A1, AAF, and PAF that responds to the paired tone frequency. Across all tested auditory fields, the response strength to tones was strengthened in VNS-tone paired rats compared with control rats. VNS-tone pairing reduced spontaneous activity, frequency selectivity, and response threshold across the auditory pathway. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing. Our findings suggest that VNS paired with sound presentation is an effective method to enhance auditory processing.NEW & NOTEWORTHY Previous studies have reported primary auditory cortex plasticity following vagus nerve stimulation (VNS) paired with a sound. This study extends previous findings by documenting that fields across the auditory pathway are altered by VNS-tone pairing. VNS-tone pairing increases the percentage of each field that responds to the paired tone frequency. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing.
Collapse
Affiliation(s)
- Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Will A Vrana
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Nicole A Moreno
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth A Fogarty
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth P Buell
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Sven Vanneste
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| |
Collapse
|
31
|
Hu C, Tokoglu F, Scheinost D, Qiu M, Shen X, Peters DC, Galiana G, Constable RT. Dynamic-flip-angle ECG-gating with nuisance signal regression improves resting-state BOLD functional connectivity mapping by reducing cardiogenic noise. Magn Reson Med 2019; 82:911-923. [PMID: 31016782 DOI: 10.1002/mrm.27775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE To investigate an ECG-gated dynamic-flip-angle BOLD sequence with improved robustness against cardiogenic noise in resting-state fMRI. METHODS ECG-gating minimizes the cardiogenic noise but introduces T1 -dependent signal variation, which is minimized by combination of a dynamic-flip-angle technique and retrospective nuisance signal regression (NSR) using signals of white matter, CSF, and global average. The technique was studied with simulations in a wide range of T1 and B1 fields and phantom imaging with pre-programmed TR variations. Resting-state fMRI of 20 healthy subjects was acquired with non-gated BOLD (NG), ECG-gated constant-flip-angle BOLD (GCFA), ECG-gated BOLD with retrospective T1 -correction (GRC), and ECG-gated dynamic-flip-angle BOLD (GDFA), all processed by the same NSR method. GDFA was compared to alternative methods over temporal SNR (tSNR), seed-based connectivity, and whole-brain voxelwise connectivity based on intrinsic connectivity distribution (ICD). A previous large-cohort data set (N = 100) was used as a connectivity gold standard. RESULTS Simulations and phantom imaging show substantial reduction of the T1 -dependent signal variation with GDFA alone, and further reduction with NSR. The resting-state study shows improved tSNR in the basal brain, comparing GDFA to NG, after both processed with NSR. Furthermore, GDFA significantly improved subcortical-subcortical and cortical-subcortical connectivity for several representative seeds and significantly improved ICD in the brainstem, thalamus, striatum, and prefrontal cortex, compared to the other 3 approaches. CONCLUSION GDFA with NSR improves mapping of the resting-state functional connectivity of the basal-brain regions by reducing cardiogenic noise.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - Fuyuze Tokoglu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - Maolin Qiu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Conneticut
| |
Collapse
|
32
|
Theodoroff SM, Kaltenbach JA. The Role of the Brainstem in Generating and Modulating Tinnitus. Am J Audiol 2019; 28:225-238. [PMID: 31022358 DOI: 10.1044/2018_aja-ttr17-18-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this work is to present a perspective article summarizing ideas pertaining to the brainstem's role in generating and modulating tinnitus. It is organized in 4 sections: Part 1, the role of the brainstem as a tinnitus generator; Part 2, the role of the brainstem in modulating tinnitus; Part 3, the role of the brainstem in nonauditory comorbid conditions associated with tinnitus; and Part 4, clinical implications. In Part 1, well-established neurophysiological models are discussed providing the framework of evidence that auditory brainstem nuclei play a role in generating tinnitus. In Part 2, ideas are presented explaining modulatory effects on tinnitus related to underlying pathways originating from or projecting to brainstem auditory and nonauditory nuclei. This section addresses multiple phenomena including somatic-related, attention-mediated, and emotion-mediated changes in the tinnitus percept. In Part 3, the role of the brainstem in common nonauditory comorbidities that occur in patients with tinnitus is discussed. Part 4 presents clinical implications of these new ideas related to the brainstem's involvement in generating and modulating tinnitus. Impact Knowledge of the brainstem's involvement in generating and modulating tinnitus provides a context for health care professionals to understand the temporal relationship between tinnitus and common nonauditory comorbid conditions.
Collapse
Affiliation(s)
- Sarah M. Theodoroff
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR
- Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland
| | - James A. Kaltenbach
- Department of Neurosciences, Lerner Research Institute/Head and Neck Institute, Cleveland Clinic, OH
| |
Collapse
|
33
|
|
34
|
Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus. Exp Brain Res 2019; 237:883-896. [DOI: 10.1007/s00221-018-05468-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/29/2018] [Indexed: 12/19/2022]
|
35
|
Reduced Structural Connectivity Between Left Auditory Thalamus and the Motion-Sensitive Planum Temporale in Developmental Dyslexia. J Neurosci 2019; 39:1720-1732. [PMID: 30643025 DOI: 10.1523/jneurosci.1435-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/02/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however, recent evidence also points toward sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speech processing in contrast to neurotypical readers. In addition, in the visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortex region involved in visual movement processing. Higher LGN-V5/MT connectivity in dyslexics was associated with the faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. Here, we tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory-motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT-MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging-based probabilistic tracking, we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT-MGB connectivity was not associated with faster RANln scores in dyslexics, but was in neurotypical readers. Our findings provide the first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia and it may also affect reading-related cognitive abilities in neurotypical readers.SIGNIFICANCE STATEMENT Developmental dyslexia is one of the most widespread learning disabilities. Although previous neuroimaging research mainly focused on pathomechanisms of dyslexia at the cerebral cortex level, several lines of evidence suggest an atypical functioning of subcortical sensory structures. By means of diffusion tensor imaging, we here show that dyslexic male adults have reduced white matter connectivity in a cortico-thalamic auditory pathway between the left auditory motion-sensitive planum temporale and the left medial geniculate body. Connectivity strength of this pathway was associated with measures of reading fluency in neurotypical readers. This is novel evidence on the neurocognitive correlates of reading proficiency, highlighting the importance of cortico-subcortical interactions between regions involved in the processing of spectrotemporally complex sound.
Collapse
|
36
|
Abstract
Objective and subjective tinnitus can often be differentiated based on comprehensive history, physical examination, and audiogram. Examples of objective tinnitus include vascular abnormalities, palatal myoclonus, patulous eustachian tube, and stapedial/tensor tympani muscle spasm. Subjective tinnitus is usually associated with hearing loss. Rarely, tinnitus is the result of an underlying condition. In these cases, imaging and additional testing may be indicated. Classification of the type, quality, and intensity of tinnitus is helpful in the work-up and treatment of tinnitus. Treatment modalities include cognitive behavioral therapy, tinnitus retraining therapy, sound therapy, hearing aids, cochlear implants, pharmacotherapy, and brain stimulation.
Collapse
Affiliation(s)
- Divya A Chari
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 2233 Post Street, 3rd Floor, San Francisco, CA 94115, USA
| | - Charles J Limb
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 2233 Post Street, 3rd Floor, San Francisco, CA 94115, USA.
| |
Collapse
|
37
|
Rammo R, Ali R, Pabaney A, Seidman M, Schwalb J. Surgical Neuromodulation of Tinnitus: A Review of Current Therapies and Future Applications. Neuromodulation 2018; 22:380-387. [DOI: 10.1111/ner.12793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Richard Rammo
- Department of NeurosurgeryHenry Ford HospitalDetroit MI USA
| | - Rushna Ali
- Department of Neurological SurgeryVanderbilt UniversityNashville TN USA
| | - Aqueel Pabaney
- Department of Neurosurgery, Grandview Medical CenterKettering Health NetworkDayton OH USA
| | - Michael Seidman
- Department of OtolaryngologyFlorida Hospital Celebration HealthCelebration FL USA
| | - Jason Schwalb
- Department of NeurosurgeryHenry Ford HospitalDetroit MI USA
| |
Collapse
|
38
|
Dewey RS, Hall DA, Guest H, Prendergast G, Plack CJ, Francis ST. The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study. JMIR Res Protoc 2018; 7:e79. [PMID: 29523503 PMCID: PMC5866298 DOI: 10.2196/resprot.9095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 01/06/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. OBJECTIVE Our Medical Research Council-funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). METHODS Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. RESULTS This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. CONCLUSIONS This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss.
Collapse
Affiliation(s)
- Rebecca Susan Dewey
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Deborah A Hall
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
39
|
Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: An exploratory retrospective study. Sci Rep 2017; 7:17345. [PMID: 29230011 PMCID: PMC5725594 DOI: 10.1038/s41598-017-17750-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Recent research has shown that vagus nerve stimulation (VNS) paired with tones or with rehabilitative training can help patients to achieve reductions in tinnitus perception or to expedite motor rehabilitation after suffering an ischemic stroke. The rationale behind this treatment is that VNS paired with experience can drive neural plasticity in a controlled and therapeutic direction. Since previous studies observed that gamma activity in the auditory cortex is correlated with tinnitus loudness, we assessed resting-state source-localized EEG before and after one to three months of VNS-tone pairing in chronic tinnitus patients. VNS-tone pairing reduced gamma band activity in left auditory cortex. VNS-tone pairing also reduced the phase coherence between the auditory cortex and areas associated with tinnitus distress, including the cingulate cortex. These results support the hypothesis that VNS-tone pairing can direct therapeutic neural plasticity. Targeted plasticity therapy might also be adapted to treat other conditions characterized by hypersynchronous neural activity.
Collapse
|
40
|
Alonso-Valerdi LM, Ibarra-Zarate DI, Tavira-Sánchez FJ, Ramírez-Mendoza RA, Recuero M. Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus. BMC EAR, NOSE, AND THROAT DISORDERS 2017; 17:9. [PMID: 29209149 PMCID: PMC5704517 DOI: 10.1186/s12901-017-0042-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022]
Abstract
Background To date, a large number of acoustic therapies have been applied to treat tinnitus. The effect that produces those auditory stimuli is, however, not well understood yet. Furthermore, the conventional clinical protocol is based on a trial-error procedure, and there is not a formal and adequate treatment follow-up. At present, the only way to evaluate acoustic therapies is by means of subjective methods such as analog visual scale and ad-hoc questionnaires. Methods This protocol seeks to establish an objective methodology to treat tinnitus with acoustic therapies based on electroencephalographic (EEG) activity evaluation. On the hypothesis that acoustic therapies should produce perceptual and cognitive changes at a cortical level, it is proposed to examine neural electrical activity of patients suffering from refractory and chronic tinnitus in four different stages: at the beginning of the experiment, at one week of treatment, at five weeks of treatment, and at eight weeks of treatment. Four of the most efficient acoustic therapies found at the moment are considered: retraining, auditory discrimination, enriched acoustic environment, and binaural. Discussion EEG has become a standard brain imaging tool to quantify and qualify neural oscillations, which are basically spatial, temporal, and spectral patterns associated with particular perceptual, cognitive, motor and emotional processes. Neural oscillations have been traditionally studied on the basis of event-related experiments, where time-locked and phase-locked responses (i.e., event-related potentials) along with time-locked but not necessary phase-locked responses (i.e., event-related (de) synchronization) have been essentially estimated. Both potentials and levels of synchronization related to auditory stimuli are herein proposed to assess the effect of acoustic therapies. Trial registration Registration Number: ISRCTN14553550. ISRCTN Registry: BioMed Central. Date of Registration: October 31st, 2017.
Collapse
Affiliation(s)
- Luz María Alonso-Valerdi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico.,Massachusetts Institute of Technology, Cambridge, MA USA
| | - Francisco J Tavira-Sánchez
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, Carretera de Valencia km 7, 28031 Madrid, Spain
| | - Ricardo A Ramírez-Mendoza
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - Manuel Recuero
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, Carretera de Valencia km 7, 28031 Madrid, Spain
| |
Collapse
|
41
|
Ouyang J, Pace E, Lepczyk L, Kaufman M, Zhang J, Perrine SA, Zhang J. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study. Sci Rep 2017; 7:4852. [PMID: 28687812 PMCID: PMC5501813 DOI: 10.1038/s41598-017-04941-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Collapse
Affiliation(s)
- Jessica Ouyang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Edward Pace
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura Lepczyk
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael Kaufman
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jessica Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jinsheng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, 48201, USA.
| |
Collapse
|
42
|
Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment. J Neurosci 2017; 37:6314-6330. [PMID: 28583912 DOI: 10.1523/jneurosci.0602-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 01/12/2023] Open
Abstract
Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation-inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage to prevent the development of central processing deficits.
Collapse
|
43
|
Caspary DM, Llano DA. Auditory thalamic circuits and GABA A receptor function: Putative mechanisms in tinnitus pathology. Hear Res 2017; 349:197-207. [PMID: 27553899 PMCID: PMC5319923 DOI: 10.1016/j.heares.2016.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predict tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing de-inactivation of T-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
44
|
Brozoski T, Brozoski D, Wisner K, Bauer C. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus. Hear Res 2017; 350:139-151. [PMID: 28478300 DOI: 10.1016/j.heares.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No-Tinnitus). Neuron degeneration was also documented in the cochlear nucleus and PFL of exposed animals, both with and without tinnitus. Degeneration was not found in unexposed animals. Implications for tinnitus neuropathy are discussed in the context of synaptic remodeling and cerebellar sensory modulation.
Collapse
Affiliation(s)
- Thomas Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States.
| | - Daniel Brozoski
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Kurt Wisner
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | - Carol Bauer
- Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| |
Collapse
|
45
|
High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topogr 2017; 30:685-697. [DOI: 10.1007/s10548-017-0547-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
|
46
|
Mulders WHAM, Vooys V, Makowiecki K, Tang AD, Rodger J. The effects of repetitive transcranial magnetic stimulation in an animal model of tinnitus. Sci Rep 2016; 6:38234. [PMID: 27905540 PMCID: PMC5131273 DOI: 10.1038/srep38234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023] Open
Abstract
Tinnitus (phantom auditory perception associated with hearing loss) can seriously affect wellbeing. Its neural substrate is unknown however it has been linked with abnormal activity in auditory pathways. Though no cure currently exists, repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce tinnitus in some patients, possibly via induction of cortical plasticity involving brain derived neurotrophic factor (BDNF). We examined whether low intensity rTMS (LI-rTMS) alleviates signs of tinnitus in a guinea pig model and whether this involves changes in BDNF expression and hyperactivity in inferior colliculus. Acoustic trauma was used to evoke hearing loss, central hyperactivity and tinnitus. When animals developed tinnitus, treatment commenced (10 sessions of 10 minutes 1 Hz LI-rTMS or sham over auditory cortex over 14 days). After treatment ceased animals were tested for tinnitus, underwent single-neuron recordings in inferior colliculus to assess hyperactivity and samples from cortex and inferior colliculus were taken for BDNF ELISA. Analysis revealed a significant reduction of tinnitus after LI-rTMS compared to sham, without a statistical significant effect on BDNF levels or hyperactivity. This suggests that LI-rTMS alleviates behavioural signs of tinnitus by a mechanism independent of inferior colliculus hyperactivity and BDNF levels and opens novel therapeutic avenues for tinnitus treatment.
Collapse
Affiliation(s)
- Wilhelmina H A M Mulders
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Vanessa Vooys
- The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Kalina Makowiecki
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Alex D Tang
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Jennifer Rodger
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
47
|
Allan TW, Besle J, Langers DRM, Davies J, Hall DA, Palmer AR, Adjamian P. Neuroanatomical Alterations in Tinnitus Assessed with Magnetic Resonance Imaging. Front Aging Neurosci 2016; 8:221. [PMID: 27708577 PMCID: PMC5030287 DOI: 10.3389/fnagi.2016.00221] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023] Open
Abstract
Previous studies of anatomical changes associated with tinnitus have provided inconsistent results, with some showing significant cortical and subcortical changes, while others have found effects due to hearing loss, but not tinnitus. In this study, we examined changes in brain anatomy associated with tinnitus using anatomical scans from 128 participants with tinnitus and hearing loss, tinnitus with clinically normal hearing, and non-tinnitus controls with clinically normal hearing. The groups were matched for hearing loss, age and gender. We employed voxel- and surface-based morphometry (SBM) to investigate gray and white matter volume and thickness within regions-of-interest (ROI) that were based on the results of previous studies. The largest overall effects were found for age, gender, and hearing loss. With regard to tinnitus, analysis of ROI revealed numerous small increases and decreases in gray matter and thickness between tinnitus and non-tinnitus controls, in both cortical and subcortical structures. For whole brain analysis, the main tinnitus-related significant clusters were found outside sensory auditory structures. These include a decrease in cortical thickness for the tinnitus group compared to controls in the left superior frontal gyrus (SFG), and a decrease in cortical volume with hearing loss in left Heschl’s gyrus (HG). For masked analysis, we found a decrease in gray matter volume in the right Heschle’s gyrus for the tinnitus group compared to the controls. We found no changes in the subcallosal region as reported in some previous studies. Overall, while some of the morphological differences observed in this study are similar to previously published findings, others are entirely different or even contradict previous results. We highlight other discrepancies among previous results and the increasing need for a more precise subtyping of the condition.
Collapse
Affiliation(s)
- Thomas W Allan
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Julien Besle
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Dave R M Langers
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Jeff Davies
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Deborah A Hall
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Peyman Adjamian
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| |
Collapse
|
48
|
Soleimani R, Jalali MM, Hasandokht T. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2016; 273:1663-1675. [DOI: 10.1007/s00405-015-3642-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
49
|
Behler O, Uppenkamp S. The representation of level and loudness in the central auditory system for unilateral stimulation. Neuroimage 2016; 139:176-188. [PMID: 27318216 DOI: 10.1016/j.neuroimage.2016.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022] Open
Abstract
Loudness is the perceptual correlate of the physical intensity of a sound. However, loudness judgments depend on a variety of other variables and can vary considerably between individual listeners. While functional magnetic resonance imaging (fMRI) has been extensively used to characterize the neural representation of physical sound intensity in the human auditory system, only few studies have also investigated brain activity in relation to individual loudness. The physiological correlate of loudness perception is not yet fully understood. The present study systematically explored the interrelation of sound pressure level, ear of entry, individual loudness judgments, and fMRI activation along different stages of the central auditory system and across hemispheres for a group of normal hearing listeners. 4-kHz-bandpass filtered noise stimuli were presented monaurally to each ear at levels from 37 to 97dB SPL. One diotic condition and a silence condition were included as control conditions. The participants completed a categorical loudness scaling procedure with similar stimuli before auditory fMRI was performed. The relationship between brain activity, as inferred from blood oxygenation level dependent (BOLD) contrasts, and both sound level and loudness estimates were analyzed by means of functional activation maps and linear mixed effects models for various anatomically defined regions of interest in the ascending auditory pathway and in the cortex. Our findings are overall in line with the notion that fMRI activation in several regions within auditory cortex as well as in certain stages of the ascending auditory pathway might be more a direct linear reflection of perceived loudness rather than of sound pressure level. The results indicate distinct functional differences between midbrain and cortical areas as well as between specific regions within auditory cortex, suggesting a systematic hierarchy in terms of lateralization and the representation of level and loudness.1.
Collapse
Affiliation(s)
- Oliver Behler
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Stefan Uppenkamp
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany; Cluster of Excellence Hearing4All, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
50
|
Hoare DJ, Adjamian P, Sereda M. Electrical Stimulation of the Ear, Head, Cranial Nerve, or Cortex for the Treatment of Tinnitus: A Scoping Review. Neural Plast 2016; 2016:5130503. [PMID: 27403346 PMCID: PMC4925995 DOI: 10.1155/2016/5130503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Tinnitus is defined as the perception of sound in the absence of an external source. It is often associated with hearing loss and is thought to result from abnormal neural activity at some point or points in the auditory pathway, which is incorrectly interpreted by the brain as an actual sound. Neurostimulation therapies therefore, which interfere on some level with that abnormal activity, are a logical approach to treatment. For tinnitus, where the pathological neuronal activity might be associated with auditory and other areas of the brain, interventions using electromagnetic, electrical, or acoustic stimuli separately, or paired electrical and acoustic stimuli, have been proposed as treatments. Neurostimulation therapies should modulate neural activity to deliver a permanent reduction in tinnitus percept by driving the neuroplastic changes necessary to interrupt abnormal levels of oscillatory cortical activity and restore typical levels of activity. This change in activity should alter or interrupt the tinnitus percept (reduction or extinction) making it less bothersome. Here we review developments in therapies involving electrical stimulation of the ear, head, cranial nerve, or cortex in the treatment of tinnitus which demonstrably, or are hypothesised to, interrupt pathological neuronal activity in the cortex associated with tinnitus.
Collapse
Affiliation(s)
- Derek J. Hoare
- NIHR Nottingham Hearing Biomedical Research Unit, Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK
| | - Peyman Adjamian
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK
| | - Magdalena Sereda
- NIHR Nottingham Hearing Biomedical Research Unit, Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK
| |
Collapse
|