1
|
Dubuc R, Cabelguen JM, Ryczko D. Locomotor pattern generation and descending control: a historical perspective. J Neurophysiol 2023; 130:401-416. [PMID: 37465884 DOI: 10.1152/jn.00204.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The ability to generate and control locomotor movements depends on complex interactions between many areas of the nervous system, the musculoskeletal system, and the environment. How the nervous system manages to accomplish this task has been the subject of investigation for more than a century. In vertebrates, locomotion is generated by neural networks located in the spinal cord referred to as central pattern generators. Descending inputs from the brain stem initiate, maintain, and stop locomotion as well as control speed and direction. Sensory inputs adapt locomotor programs to the environmental conditions. This review presents a comparative and historical overview of some of the neural mechanisms underlying the control of locomotion in vertebrates. We have put an emphasis on spinal mechanisms and descending control.
Collapse
Affiliation(s)
- Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Marie Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1215-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Neurosciences Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Flett S, Garcia J, Cowley KC. Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review. J Neurophysiol 2022; 128:649-670. [PMID: 35894427 DOI: 10.1152/jn.00205.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in sensory, motor and autonomic dysfunction. Obesity, cardiovascular and metabolic diseases are highly prevalent after SCI. Although inadequate voluntary activation of skeletal muscle contributes, it is absent or inadequate activation of thoracic spinal sympathetic neural circuitry and sub-optimal activation of homeostatic (cardiovascular, temperature) and metabolic support systems that truly limits exercise capacity, particularly for those with cervical SCI. Thus, when electrical spinal cord stimulation (SCS) studies aimed at improving motor functions began mentioning effects on exercise-related autonomic functions, a potential new area of clinical application appeared. To survey this new area of potential benefit, we performed a systematic scoping review of clinical SCS studies involving these spinally mediated autonomic functions. Nineteen studies were included, 8 used transcutaneous and 11 used epidural SCS. Improvements in BP at rest or in response to orthostatic challenge were investigated most systematically, whereas reports of improved temperature regulation, whole body metabolism and peak exercise performance were mainly anecdotal. Effective stimulation locations and parameters varied between studies, suggesting multiple stimulation parameters and rostrocaudal spinal locations may influence the same sympathetic function. Brainstem and spinal neural mechanisms providing excitatory drive to sympathetic neurons that activate homeostatic and metabolic tissues that provide support for movement and exercise and their integration with locomotor neural circuitry are discussed. A unifying conceptual framework for the integrated neural control of locomotor and sympathetic function is presented which may inform future research needed to take full advantage of SCS for improving these spinally mediated autonomic functions.
Collapse
Affiliation(s)
- Sarah Flett
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Juanita Garcia
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Gerasimenko Y, Preston C, Zhong H, Roy RR, Edgerton VR, Shah PK. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat. J Neurophysiol 2019; 122:585-600. [PMID: 30943092 DOI: 10.1152/jn.00810.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The precise location and functional organization of the spinal neuronal locomotor-related networks in adult mammals remain unclear. Our recent neurophysiological findings provided empirical evidence that the rostral lumbar spinal cord segments play a critical role in the initiation and generation of the rhythmic activation patterns necessary for hindlimb locomotion in adult spinal rats. Since added epidural stimulation at the S1 segments significantly enhanced the motor output generated by L2 stimulation, these data also suggested that the sacral spinal cord provides a strong facilitory influence in rhythm initiation and generation. However, whether L2 will initiate hindlimb locomotion in the absence of S1 segments, and whether S1 segments can facilitate locomotion in the absence of L2 segments remain unknown. Herein, adult rats received complete spinal cord transections at T8 and then at either L2 or S1. Rats with spinal cord transections at T8 and S1 remained capable of generating coordinated hindlimb locomotion when receiving epidural stimulation at L2 and when ensembles of locomotor related loadbearing input were present. In contrast, minimal locomotion was observed when S1 stimulation was delivered after spinal cord transections at T8 and L2. Results were similar when the nonspecific serotonergic agonists were administered. These results demonstrate in adult rats that rostral lumbar segments are essential for the regulation of hindlimb locomotor rhythmicity. In addition, the more caudal spinal networks alone cannot control locomotion in the absence of the rostral segments around L2 even when loadbearing rhythmic proprioceptive afferent input is imposed.NEW & NOTEWORTHY The exact location of the spinal neuronal locomotor-related networks in adult mammals remains unknown. The present data demonstrate that when the rostral lumbar spinal segments (~L2) are completely eliminated in thoracic spinal adult rats, hindlimb stepping is not possible with neurochemical modulation of the lumbosacral cord. In contrast, eliminating the sacral cord retains stepping ability. These observations highlight the importance of rostral lumbar segments in generating effective mammalian locomotion.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Chet Preston
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California.,Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, California.,Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, California.,Institute Guttmann. Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, Badalona, Spain.,Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.,Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Prithvi K Shah
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York.,Department of Neurobiology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
4
|
Cowley KC. A new conceptual framework for the integrated neural control of locomotor and sympathetic function: implications for exercise after spinal cord injury. Appl Physiol Nutr Metab 2019; 43:1140-1150. [PMID: 30071179 DOI: 10.1139/apnm-2018-0310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All mammals, including humans, are designed to produce sustained locomotor movements. Many higher centres are involved in movement, but ultimately these centres act upon a core "rhythm-generating" network within the brainstem-spinal cord. In addition, endurance-based locomotor exercise requires sympathetic neural support to maintain homeostasis and to provide needed metabolic resources. This review focuses on the roles and integration of these 2 neural systems. Part I reviews the cardiovascular, thermoregulatory, and metabolic functions under spinal sympathetic control as revealed by spinal cord injury at different levels. Part II examines the integration between brainstem-spinal sympathetic pathways and the neural circuitry producing motor rhythms. In particular, the rostroventral medulla (RVM) contains the neural circuitry that (i) integrates heart rate, contractility, and blood flow in response to postural changes; (ii) initiates and maintains cardiovascular adaptations for exercise; (iii) provides direct descending innervation to preganglionic neurons innervating the adrenal glands, white adipose tissue, and tissues responsible for cooling the body; (iv) integrates descending sympathetic drive for energy substrate mobilization (lipolysis); and (v) is the relay for descending locomotor commands arising from higher brain centres. A unifying conceptual framework is presented, in which the RVM serves as the final descending supraspinal "exercise integration centre" linking the descending locomotor command signal with the metabolic and homeostatic support needed to produce prolonged rhythmic activities. The role and rationale for an ascending sympathetic and locomotor drive from the lower to upper limbs within this framework is presented. Examples of new research directions based on this unifying framework are discussed.
Collapse
Affiliation(s)
- Kristine C Cowley
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Coslovich T, Brumley MR, D'Angelo G, Della Mora A, Swann HE, Ortolani F, Taccola G. Histamine modulates spinal motoneurons and locomotor circuits. J Neurosci Res 2017; 96:889-900. [PMID: 29114923 DOI: 10.1002/jnr.24195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022]
Abstract
Spinal motoneurons and locomotor networks are regulated by monoamines, among which, the contribution of histamine has yet to be fully addressed. The present study investigates histaminergic regulation of spinal activity, combining intra- and extracellular electrophysiological recordings from neonatal rat spinal cord in vitro preparations. Histamine dose-dependently and reversibly generated motoneuron depolarization and action potential firing. Histamine (20 µM) halved the area of dorsal root reflexes and always depolarized motoneurons. The majority of cells showed a transitory repolarization, while 37% showed a sustained depolarization maintained with intense firing. Extracellularly, histamine depolarized ventral roots (VRs), regardless of blockage of ionotropic glutamate receptors. Initial, transient glutamate-mediated bursting was synchronous among VRs, with some bouts of locomotor activity in a subgroup of preparations. After washout, the amplitude of spontaneous tonic discharges increased. No desensitization or tachyphylaxis appeared after long perfusion or serial applications of histamine. On the other hand, histamine induced single motoneuron and VR depolarization, even in the presence of tetrodotoxin (TTX). During chemically induced fictive locomotion (FL), histamine depolarized VRs. Histamine dose-dependently increased rhythm periodicity and reduced cycle amplitude until near suppression. This study demonstrates that histamine induces direct motoneuron membrane depolarization and modulation of locomotor output, indicating new potential targets for locomotor neurorehabilitation.
Collapse
Affiliation(s)
- Tamara Coslovich
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265 Trieste, (TS), Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48 Udine (UD), Italy
| | | | - Giuseppe D'Angelo
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265 Trieste, (TS), Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48 Udine (UD), Italy
| | - Alberto Della Mora
- Department of Experimental Clinical Medicine, University of Udine, Piazzale Kolbe 3 Udine, Italy
| | | | - Fulvia Ortolani
- Department of Experimental Clinical Medicine, University of Udine, Piazzale Kolbe 3 Udine, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265 Trieste, (TS), Italy.,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), via Gervasutta 48 Udine (UD), Italy
| |
Collapse
|
6
|
Abd-El-Barr MM, Chi JH. From the Bottom Up: The Role of Sacral Pattern Generators in Modulating Rostral Lumbar Flexor Motor Neurons. Neurosurgery 2017; 81:N28-N29. [DOI: 10.1093/neuros/nyx396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
7
|
Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks. J Neurosci 2016; 37:1294-1311. [PMID: 28025254 DOI: 10.1523/jneurosci.2213-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/11/2016] [Accepted: 12/14/2016] [Indexed: 12/27/2022] Open
Abstract
The ability to improve motor function in spinal cord injury patients by reactivating spinal central pattern generators (CPGs) requires the elucidation of neurons and pathways involved in activation and modulation of spinal networks in accessible experimental models. Previously we reported on adrenoceptor-dependent sacral control of lumbar flexor motoneuron firing in newborn rats. The current work focuses on clarification of the circuitry and connectivity involved in this unique modulation and its potential use. Using surgical manipulations of the spinal gray and white matter, electrophysiological recordings, and confocal microscopy mapping, we found that methoxamine (METH) activation of sacral networks within the ventral aspect of S2 segments was sufficient to produce alternating rhythmic bursting (0.15-1 Hz) in lumbar flexor motoneurons. This lumbar rhythm depended on continuity of the ventral funiculus (VF) along the S2-L2 segments. Interrupting the VF abolished the rhythm and replaced it by slow unstable bursting. Calcium imaging of S1-S2 neurons, back-labeled via the VF, revealed that ∼40% responded to METH, mostly by rhythmic firing. All uncrossed projecting METH responders and ∼70% of crossed projecting METH responders fired with the concurrent ipsilateral motor output, while the rest (∼30%) fired with the contralateral motor output. We suggest that METH-activated sacral CPGs excite ventral clusters of sacral VF neurons to deliver the ascending drive required for direct rhythmic activation of lumbar flexor motoneurons. The capacity of noradrenergic-activated sacral CPGs to modulate the activity of lumbar networks via sacral VF neurons provides a novel way to recruit rostral lumbar motoneurons and modulate the output required to execute various motor behaviors. SIGNIFICANCE STATEMENT Spinal central pattern generators (CPGs) produce the rhythmic output required for coordinating stepping and stabilizing the body axis during movements. Electrical stimulation and exogenous drugs can reactivate the spinal CPGs and improve the motor function in the absence of descending supraspinal control. Since the body-stabilizing sacral networks can activate and modulate the limb-moving lumbar circuitry, it is important to clarify the functional organization of sacral and lumbar networks and their linking pathways. Here we decipher the ascending circuitry linking adrenoceptor-activated sacral CPGs and lumbar flexor motoneurons, thereby providing novel insights into mechanisms by which sacral circuitry recruits lumbar flexors, and enhances the motor output during lumbar afferent-induced locomotor rhythms. Moreover, our findings might help to improve drug/electrical stimulation-based therapy to accelerate locomotor-based rehabilitation.
Collapse
|
8
|
Abstract
Effective quadrupedal locomotor behaviors require the coordination of many muscles in the limbs, back, neck, and tail. Because of the spinal motoneuronal somatotopic organization, motor coordination implies interactions among distant spinal networks. Here, we investigated some of the interactions between the lumbar locomotor networks that control limb movements and the thoracic networks that control the axial muscles involved in trunk movement. For this purpose, we used an in vitro isolated newborn rat spinal cord (from T2 to sacrococcygeal) preparation. Using extracellular ventral root recordings, we showed that, while the thoracic cord possesses an intrinsic rhythmogenic capacity, the lumbar circuits, if they are rhythmically active, will entrain the rhythmicity of the thoracic circuitry. However, if the lumbar circuits are rhythmically active, these latter circuits will entrain the rhythmicity of the thoracic circuitry. Blocking the synaptic transmission in some thoracic areas revealed that the lumbar locomotor network could trigger locomotor bursting in distant thoracic segments through short and long propriospinal pathways. Patch-clamp recordings revealed that 72% of the thoracic motoneurons (locomotor-driven motoneurons) expressed membrane potential oscillations and spiking activity coordinated with the locomotor activity expressed by the lumbar cord. A biphasic excitatory (glutamatergic)/inhibitory (glycinergic) synaptic drive was recorded in thoracic locomotor-driven motoneurons. Finally, we found evidence that part of this locomotor drive involved a monosynaptic component coming directly from the lumbar locomotor network. We conclude that the lumbar locomotor network plays a central role in the generation of locomotor outputs in the thoracic cord by acting at both the premotoneuronal and motoneuronal levels.
Collapse
|
9
|
Cherniak M, Etlin A, Strauss I, Anglister L, Lev-Tov A. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord. Front Neural Circuits 2014; 8:143. [PMID: 25520624 PMCID: PMC4253665 DOI: 10.3389/fncir.2014.00143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/11/2014] [Indexed: 01/17/2023] Open
Abstract
Identification of neural networks and pathways involved in activation and modulation of spinal central pattern generators (CPGs) in the absence of the descending control from the brain is important for further understanding of neural control of movement and for developing innovative therapeutic approaches to improve the mobility of spinal cord injury patients. Activation of the hindlimb innervating segments by sacrocaudal (SC) afferent input and by specific application of neurochemicals to the sacral networks is feasible in the isolated spinal cord preparation of the newborn rat. Here we review our recent studies of sacral relay neurons with lumbar projections and evaluate their role in linking the sacral and thoracolumbar (TL) networks during different motor behaviors. Our major findings show that: (1) heterogeneous groups of dorsal, intermediate and ventral sacral-neurons with ventral and lateral ascending funicular projections mediate the activation of the locomotor CPGs through sacral sensory input; and (2) rhythmic excitation of lumbar flexor motoneurons, produced by bath application of alpha-1 adrenoceptor agonists to the sacral segments is mediated exclusively by ventral clusters of sacral-neurons with lumbar projections through the ventral funiculus.
Collapse
Affiliation(s)
- Meir Cherniak
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, IMRIC, The Hebrew University Medical School Jerusalem, Israel
| | - Alex Etlin
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, IMRIC, The Hebrew University Medical School Jerusalem, Israel
| | - Ido Strauss
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, IMRIC, The Hebrew University Medical School Jerusalem, Israel
| | - Lili Anglister
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, IMRIC, The Hebrew University Medical School Jerusalem, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, IMRIC, The Hebrew University Medical School Jerusalem, Israel
| |
Collapse
|
10
|
Beliez L, Barrière G, Bertrand SS, Cazalets JR. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord. Front Neural Circuits 2014; 8:99. [PMID: 25177275 PMCID: PMC4133733 DOI: 10.3389/fncir.2014.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023] Open
Abstract
Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1) to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2) to investigate how the biogenic amines serotonin (5-HT), dopamine (DA), and noradrenaline (NA) modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs) elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic “signature” regarding its specific effect on intersegmental phase relationships.
Collapse
Affiliation(s)
- Lauriane Beliez
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Gregory Barrière
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Sandrine S Bertrand
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Jean-René Cazalets
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| |
Collapse
|
11
|
Charrier V, Cabelguen JM. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders. Neuroscience 2013; 255:191-202. [PMID: 24161283 DOI: 10.1016/j.neuroscience.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
Most investigations into the role of the body axis in vertebrate locomotion have focused on the trunk, although in most tetrapods, the tail also plays an active role. In salamanders, the tail contributes to propulsion during swimming and to dynamic balance and maneuverability during terrestrial locomotion. The aim of the present study was to obtain information concerning the neural mechanisms that produce tail muscle contractions during locomotion in the salamander Pleurodeles waltlii. We recorded the ventral root activities in in vitro spinal cord preparations in which locomotor-like activity was induced via bath application of N-methyl-d-aspartate (20μM) and d-serine (10μM). Recordings showed that the tail spinal cord is capable of producing propagated waves of motor activity that alternate between the left and right sides. Lesion experiments further revealed that the tail rhythmogenic network is composed of a double chain of identical hemisegmental oscillators. Finally, using spinal cord preparations bathed in a chamber partitioned into two pools, we revealed efficient short-distance coupling between the trunk and tail networks. Together, our results demonstrate the existence of a pattern generator for rhythmic tail movements in the salamander and show that the global architecture of the tail network is similar to that previously proposed for the mid-trunk locomotor network in the salamander. Our findings further support the view that salamanders can control their trunk and tail independently during stepping movements. The relevance of our results in relation to the generation of tail muscle contractions in freely moving salamanders is discussed.
Collapse
Affiliation(s)
- V Charrier
- Neurocentre Magendie, INSERM U 862 - Université de Bordeaux, 146 rue Léo Saignat, F-33077 Bordeaux Cedex, France.
| | | |
Collapse
|
12
|
Acevedo JM, Díaz-Ríos M. Removing sensory input disrupts spinal locomotor activity in the early postnatal period. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1105-16. [PMID: 24043359 DOI: 10.1007/s00359-013-0853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/30/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional, leaving the spinal CPG network without its initiating drive. Recent studies have focused on the importance of maintaining sensory stimulation to the limbs of SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network using a neonatal mouse spinal cord preparation where the hindlimbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates into the design of novel therapeutic strategies to treat patients who have suffered a SCI.
Collapse
Affiliation(s)
- Jean Marie Acevedo
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Boulevard del Valle, San Juan, 00901, Puerto Rico
| | | |
Collapse
|
13
|
Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input. J Neurosci 2013; 33:734-47. [PMID: 23303951 DOI: 10.1523/jneurosci.4390-12.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed.
Collapse
|
14
|
Masino MA, Abbinanti MD, Eian J, Harris-Warrick RM. TTX-resistant NMDA receptor-mediated membrane potential oscillations in neonatal mouse Hb9 interneurons. PLoS One 2012; 7:e47940. [PMID: 23094101 PMCID: PMC3475713 DOI: 10.1371/journal.pone.0047940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023] Open
Abstract
Conditional neuronal membrane potential oscillations have been identified as a potential mechanism to help support or generate rhythmogenesis in neural circuits. A genetically identified population of ventromedial interneurons, called Hb9, in the mouse spinal cord has been shown to generate TTX-resistant membrane potential oscillations in the presence of NMDA, serotonin and dopamine, but these oscillatory properties are not well characterized. Hb9 interneurons are rhythmically active during fictive locomotor-like behavior. In this study, we report that exogenous N-Methyl-D-Aspartic acid (NMDA) application is sufficient to produce membrane potential oscillations in Hb9 interneurons. In contrast, exogenous serotonin and dopamine application, alone or in combination, are not sufficient. The properties of NMDA-induced oscillations vary among the Hb9 interneuron population; their frequency and amplitude increase with increasing NMDA concentration. NMDA does not modulate the T-type calcium current (ICa(T)), which is thought to be important in generating locomotor-like activity, in Hb9 neurons. These results suggest that NMDA receptor activation is sufficient for the generation of TTX-resistant NMDA-induced membrane potential oscillations in Hb9 interneurons.
Collapse
Affiliation(s)
- Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America.
| | | | | | | |
Collapse
|
15
|
Hochman S, Gozal EA, Hayes HB, Anderson JT, DeWeerth SP, Chang YH. Enabling techniques for in vitro studies on mammalian spinal locomotor mechanisms. Front Biosci (Landmark Ed) 2012; 17:2158-80. [PMID: 22652770 DOI: 10.2741/4043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neonatal rodent spinal cord maintained in vitro is a powerful model system to understand the central properties of spinal circuits generating mammalian locomotion. We describe three enabling approaches that incorporate afferent input and attached hindlimbs. (i) Sacral dorsal column stimulation recruits and strengthens ongoing locomotor-like activity, and implementation of a closed positive-feedback paradigm is shown to support its stimulation as an untapped therapeutic site for locomotor modulation. (ii) The spinal cord hindlimbs-restrained preparation allows suction electrode electromyographic recordings from many muscles. Inducible complex motor patterns resemble natural locomotion, and insights into circuit organization are demonstrated during spontaneous motor burst 'deletions', or following sensory stimuli such as tail and paw pinch. (iii) The spinal cord hindlimbs-pendant preparation produces unrestrained hindlimb stepping. It incorporates mechanical limb perturbations, kinematic analyses, ground reaction force monitoring, and the use of treadmills to study spinal circuit operation with movement-related patterns of sensory feedback while providing for stable whole-cell recordings from spinal neurons. Such techniques promise to provide important additional insights into locomotor circuit organization.
Collapse
Affiliation(s)
- Shawn Hochman
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Clemens S, Belin-Rauscent A, Simmers J, Combes D. Opposing modulatory effects of D1- and D2-like receptor activation on a spinal central pattern generator. J Neurophysiol 2012; 107:2250-9. [DOI: 10.1152/jn.00366.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of dopamine in regulating spinal cord function is receiving increasing attention, but its actions on spinal motor networks responsible for rhythmic behaviors remain poorly understood. Here, we have explored the modulatory influence of dopamine on locomotory central pattern generator (CPG) circuitry in the spinal cord of premetamorphic Xenopus laevis tadpoles. Bath application of exogenous dopamine to isolated brain stem-spinal cords exerted divergent dose-dependent effects on spontaneous episodic patterns of locomotory-related activity recorded extracellularly from spinal ventral roots. At low concentration (2 μM), dopamine reduced the occurrence of bursts and fictive swim episodes and increased episode cycle periods. In contrast, at high concentration (50 μM) dopamine reversed its actions on fictive swimming, now increasing both burst and swim episode occurrences while reducing episode periods. The low-dopamine effects were mimicked by the D2-like receptor agonists bromocriptine and quinpirole, whereas the D1-like receptor agonist SKF 38393 reproduced the effects of high dopamine. Furthermore, the motor response to the D1-like antagonist SCH 23390 resembled that to the D2 agonists, whereas the D2-like antagonist raclopride mimicked the effects of the D1 agonist. Together, these findings indicate that dopamine plays an important role in modulating spinal locomotor activity. Moreover, the transmitter's opposing influences on the same target CPG are likely to be accomplished by a specific, concentration-dependent recruitment of independent D2- and D1-like receptor signaling pathways that differentially mediate inhibitory and excitatory actions.
Collapse
Affiliation(s)
- S. Clemens
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina; and
| | - A. Belin-Rauscent
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - J. Simmers
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| | - D. Combes
- Université de Bordeaux, CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Bordeaux, France
| |
Collapse
|
17
|
Ryczko D, Charrier V, Ijspeert A, Cabelguen JM. Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms. J Neurophysiol 2010; 104:2677-92. [PMID: 20810687 DOI: 10.1152/jn.00479.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rhythmic and coordinated activation of axial muscles that underlie trunk movements during locomotion are generated by specialized networks in the spinal cord. The operation of these networks has been extensively investigated in limbless swimming vertebrates. But little is known about the architecture and functioning of the axial locomotor networks in limbed vertebrates. We investigated the rhythm-generating capacity of the axial segmental networks in the salamander (Pleurodeles waltlii). We recorded ventral root activity from hemisegments and segments that were surgically isolated from the mid-trunk cord and chemically activated with bath-applied N-methyl-d-aspartate (NMDA). We provide evidence that the rhythmogenic capacity of the axial network is distributed along the mid-trunk spinal cord without an excitability gradient. We demonstrate that the burst generation in a hemisegment depends on glutamatergic excitatory interactions. Reciprocal glycinergic inhibition between opposite hemisegments ensures left-right alternation and lowers the rhythm frequency in segments. Our results further suggest that persistent sodium current contributes to the rhythmic regenerating process both in hemisegments and segments. Burst termination in hemisegments is not achieved through the activation of apamine-sensitive Ca(2+)-activated K(+) channels and burst termination in segments relies on crossed glycinergic inhibition. Together our results indicate that the basic design of the salamander axial network is similar to most of axial networks investigated in other vertebrates, albeit with some significant differences in the cellular mechanism that underlies segmental bursting. This finding supports the view of a phylogenetic conservation of basic building blocks of the axial locomotor network among the vertebrates.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Pathophysiology of Spinal Networks, Neurocentre Magendie, Institut National de la Santé et de la Recherche Médicale U 862, Bordeaux University, Bordeaux Cedex, France
| | | | | | | |
Collapse
|
18
|
Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 2010; 30:10324-36. [PMID: 20685976 DOI: 10.1523/jneurosci.1208-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Afferent input from load and joint receptors has been shown to reactivate the central pattern generators for locomotion (CPGs) in spinal cord injury patients and thereby improve their motor function and mobility. Elucidation of the pathways interposed between the afferents and CPGs is critical for the determination of the capacity of sensory input to activate the CPGs when the continuity of the white matter tracts is impaired following spinal cord injury. Using electrophysiological recordings, confocal imaging studies of spinal neurons and surgical manipulations of the white matter, we show that the capacity of sacrocaudal afferent (SCA) input to produce locomotor activity in isolated rat spinal cords depends not only on long ascending pathways, but also on recruitment of sacral proprioneurons interposed between the second order neurons and the hindlimb CPGs. We argue that large heterogeneous populations of second-order and proprioneurons whose crossed and uncrossed axons project rostrally through the ventral, ventrolateral/lateral and dorsolateral white matter funiculi contribute to the generation of the rhythm by the stimulated sacrocaudal input. The complex organization and multiple projection patterns of these populations enable the sacrocaudal afferent input to activate the CPGs even if the white matter pathways are severely damaged. Further studies are required to clarify the mechanisms involved in SCA-induced locomotor activity and assess its potential use for the rescue of lost motor functions after spinal cord injury.
Collapse
|
19
|
Restrepo CE, Lundfald L, Szabó G, Erdélyi F, Zeilhofer HU, Glover JC, Kiehn O. Transmitter-phenotypes of commissural interneurons in the lumbar spinal cord of newborn mice. J Comp Neurol 2009; 517:177-92. [PMID: 19731323 DOI: 10.1002/cne.22144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Commissural interneurons (CINs) are a necessary component of central pattern generators (CPGs) for locomotion because they mediate the coordination of left and right muscle activity. The projection patterns and relative locations of different classes of CINs in the ventromedial part of the rodent lumbar cord have been described (Eide et al. [1999] J Comp Neurol 403:332-345; Stokke et al. [2002] J Comp Neurol 446:349-359; Nissen et al. [2005] J Comp Neurol 483:30-47). However, the distribution and relative prevalence of different CIN neurotransmitter phenotypes in the ventral region of the mammalian spinal cord where the locomotor CPG is localized is unknown. In this study we describe the relative proportions and anatomical locations of putative inhibitory and excitatory CINs in the lumbar spinal cord of newborn mice. To directly visualize potential neurotransmitter phenotypes we combined retrograde labeling of CINs with in situ hybridization against the glycine transporter, GlyT2, or the vesicular glutamate transporter, vGluT2, in wildtype mice and in transgenic mice expressing eGFP driven by the promoters of glutamic acid decarboxylase (GAD) 65, GAD67, or GlyT2. Our study shows that putative glycinergic, GABAergic, and glutamatergic CINs are expressed in almost equal numbers, with a small proportion of CINs coexpressing GlyT2 and GAD67::eGFP, indicating a putative combined glycinergic/GABAergic phenotype. These different CIN phenotypes were intermingled in laminas VII and VIII. Our results suggest that glycinergic, GABAergic, and glutamatergic CINs are the principal CIN phenotypes in the CPG region of the lumbar spinal cord in the newborn mouse. We compare these results to descriptions of CIN neurotransmitter phenotypes in other vertebrate species.
Collapse
Affiliation(s)
- Carlos Ernesto Restrepo
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Ivanenko YP, Cappellini G, Poppele RE, Lacquaniti F. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions. Eur J Neurosci 2008; 27:3351-68. [PMID: 18598271 DOI: 10.1111/j.1460-9568.2008.06289.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we studied the spatiotemporal organization of motoneuron (MN) activity during different human gaits. We recorded the electromyographic (EMG) activity patterns in 32 ipsilateral limb and trunk muscles from normal subjects while running and walking on a treadmill (3-12 km/h). In addition, we recorded backward walking and skipping, a distinct human gait that comprises the features of both walking and running. We mapped the recorded EMG activity patterns onto the spinal cord in approximate rostrocaudal locations of the MN pools. The activation of MNs tends to occur in bursts and be segregated by spinal segment in a gait-specific manner. In particular, sacral and cervical activation timings were clearly gait-dependent. Swing-related activity constituted an appreciable fraction (> 30%) of the total MN activity of leg muscles. Locomoting at non-preferred speeds (running and walking at 5 and 9 km/h, respectively) showed clear differences relative to preferred speeds. Running at low speeds was characterized by wider sacral activation. Walking at high non-preferred speeds was accompanied by an 'atypical' locus of activation in the upper lumbar spinal cord during late stance and by a drastically increased activation of lumbosacral segments. The latter findings suggest that the optimal speed of gait transitions may be related to an optimal intensity of the total MN activity, in addition to other factors previously described. The results overall support the idea of flexibility and adaptability of spatiotemporal activity in the spinal circuitry with constraints on the temporal functional connectivity of hypothetical pulsatile burst generators.
Collapse
Affiliation(s)
- Y P Ivanenko
- Department of Neuromotor Physiology, Scientific Institute Foundation Santa Lucia, 306 via Ardeatina, 00179 Rome, Italy.
| | | | | | | |
Collapse
|
21
|
Delivet-Mongrain H, Leblond H, Rossignol S. Effects of Localized Intraspinal Injections of a Noradrenergic Blocker on Locomotion of High Decerebrate Cats. J Neurophysiol 2008; 100:907-21. [DOI: 10.1152/jn.90454.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies demonstrated that neuronal networks located in midlumbar segments (L3–L4) are critical for the expression of locomotion in cats following complete spinalization. In the present study the importance of several thoracolumbar segments (T8–L7) for the generation of spontaneous hindlimb locomotion in decerebrate cats was evaluated. Experiments were performed in high decerebrate cats ( n = 18) walking spontaneously. Yohimbine, an alpha2-noradrenergic antagonist, was microinjected intraspinally in various thoracolumbar segments. Locomotor performance was evaluated with kinematics and electromyographic (EMG) recordings before and after each injection. When and if spontaneous locomotion (SL) was abolished, skin or perineal stimuli (exteroceptive stimuli) were used to trigger locomotion (exteroceptive-induced locomotion [EL]). Yohimbine injections at L3 or L4 completely inhibited SL and EL. In contrast, injections at T8 did not interfere with SL or EL. Injections at T10, T11, T12, L5, L6, and L7 inhibited SL but EL could still be evoked. Injections at T13, L1, and L2 had similar effects except that the quality of locomotion evoked by exteroceptive stimulation declined. Combined injections at T13, L1, and L2 abolished SL and EL, in contrast to injections restricted to the same individual segments. Simultaneous injections at L5, L6, and L7 also abolished SL but EL could still be induced. These results suggest that noradrenergic mechanisms in L3–L4 segments are involved in the expression of locomotion in decerebrate cats, whereas antagonizing noradrenergic inputs in individual rostral or caudal segments may alter the expression and overall quality of the locomotor pattern without abolishing locomotion.
Collapse
|
22
|
Abstract
A network of spinal neurons known as central pattern generator (CPG) produces the rhythmic motor patterns required for coordinated swimming, walking, and running in mammals. Because the output of this network varies with time, its analysis cannot be performed by statistical methods that assume data stationarity. The present work uses short-time Fourier (STFT) and wavelet-transform (WT) algorithms to analyze the nonstationary rhythmic signals produced in isolated spinal cords of neonatal rats during activation of the CPGs. The STFT algorithm divides the time series into consecutive overlapping or nonoverlapping windows and repeatedly applies the Fourier transform across the signal. The WT algorithm decomposes the signal using a family of wavelets varying in scale, resulting in a set of wavelet coefficients presented onto a continuous frequency range over time. Our studies revealed that a Morlet WT algorithm was the tool of choice for analyzing the CPG output. Cross-WT and wavelet coherence were used to determine interrelations between pairs of time series in time and frequency domain, while determining the critical values for statistical significance of the coherence spectra using Monte Carlo simulations of white-noise series. The ability of the cross-Morlet WT and cross-WT coherence algorithms to efficiently extract the rhythmic parameters of complex nonstationary output of spinal pattern generators over a wide range of frequencies with time is demonstrated in this work under different experimental conditions. This ability can be exploited to create a quantitative dynamic portrait of experimental and clinical data under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Y Mor
- Department of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem 91010, Israel
| | | |
Collapse
|
23
|
Blivis D, Mentis GZ, O'donovan MJ, Lev-Tov A. Differential Effects of Opioids on Sacrocaudal Afferent Pathways and Central Pattern Generators in the Neonatal Rat Spinal Cord. J Neurophysiol 2007; 97:2875-86. [PMID: 17287435 DOI: 10.1152/jn.01313.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of opioids on sacrocaudal afferent (SCA) pathways and the pattern-generating circuitry of the thoracolumbar and sacrocaudal segments of the spinal cord were studied in isolated spinal cord and brain stem-spinal cord preparations of the neonatal rat. The locomotor and tail moving rhythm produced by activation of nociceptive and nonnociceptive sacrocaudal afferents was completely blocked by specific application of the μ-opioid receptor agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt (DAMGO) to the sacrocaudal but not the thoracolumbar segments of the spinal cord. The rhythmic activity could be restored after addition of the opioid receptor antagonist naloxone to the experimental chamber. The opioid block of the SCA-induced rhythm is not due to impaired rhythmogenic capacity of the spinal cord because a robust rhythmic activity could be initiated in the thoracolumbar and sacrocaudal segments in the presence of DAMGO, either by stimulation of the ventromedial medulla or by bath application of N-methyl-d-aspartate/serotonin. We suggest that the opioid block of the SCA-induced rhythm involves suppression of synaptic transmission through sacrocaudal interneurons interposed between SCA and the pattern-generating circuitry. The expression of μ opioid receptors in several groups of dorsal, intermediate and ventral horn interneurons in the sacrocaudal segments of the cord, documented in this study, provides an anatomical basis for this suggestion.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Newborn/physiology
- Brain Stem/drug effects
- Brain Stem/physiology
- Data Interpretation, Statistical
- Electric Stimulation
- Electrophysiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Immunohistochemistry
- Instinct
- Locomotion/physiology
- Microscopy, Confocal
- Movement/physiology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Tail/innervation
- Tail/physiology
Collapse
Affiliation(s)
- D Blivis
- Dept. of Anatomy and Cell Biology, The Hebrew University Medical School, Jerusalem, 91010, Israel
| | | | | | | |
Collapse
|
24
|
Gordon IT, Whelan PJ. Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 2006; 96:3122-9. [PMID: 16956991 DOI: 10.1152/jn.00606.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoaminergic projections are among the first supraspinal inputs to innervate spinal networks. Little is known regarding the role of monoamines in modulating ongoing locomotor patterns evoked by endogenous release of neurotransmitter. Here we activate a locomotor-like rhythm by electrical stimulation of afferents and then test the modulatory effects of monoamines on the frequency, pattern, and quality of the rhythm. Stimulation of the cauda equina induced a rhythm consisting of left-right and ipsilateral alternation indicative of locomotor-like activity. First, we examined the effects of noradrenaline (NA), serotonin (5-HT), or dopamine (DA) at dose levels that did not elicit locomotor activity. Bath application of NA and DA resulted in a depression of the cauda-equina-evoked rhythm. Conversely, bath-applied 5-HT increased both the amplitude and cycle period of the evoked rhythm, an effect that was mimicked by the addition of 5-HT(2) agonists to the bath. Application of 5-HT(7) agonists disrupted the evoked rhythmic behavior. Next, we examined the effects of NA alpha(1) and alpha(2) agonists and found that the suppressive effects of NA on the rhythm could be reproduced by adding the alpha(2) agonist, clonidine, to the bath. In contrast, bath applying the alpha(1) agonist, phenylephrine, increased the amplitude and duration of the cycle period. Finally, the suppressive effects of DA were not replicated by the administration of D(1), D(2), or D(3) agonists although application of NA alpha(2) antagonists reversed the effects of DA. Application of D(1) agonists, increased the amplitude of the bursts but did not affect the cycle period. Our results indicate that monoamines can control the expression, pattern, and timing of cauda-equina-evoked locomotor patterns in developing mice.
Collapse
Affiliation(s)
- Ian T Gordon
- HSC 2119, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | | |
Collapse
|
25
|
Abstract
Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network structure as well as the identification of CPG neurons. I address the identification of excitatory CPG neurons and their role in rhythm generation, the organization of flexor-extensor networks, and the diverse role of commissural interneurons in coordinating left-right movements. Molecular and genetic approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm S17177, Sweden.
| |
Collapse
|
26
|
Cazalets JR. Metachronal propagation of motoneurone burst activation in isolated spinal cord of newborn rat. J Physiol 2005; 568:583-97. [PMID: 16081478 PMCID: PMC1474724 DOI: 10.1113/jphysiol.2005.086850] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adequate locomotor and postural activity in mammals results from the coordinated activation of assemblies of spinal cord networks. In order to assess the global functioning of spinal circuitry, multisite recordings were made from an isolated spinal cord preparation of the newborn rat. Motor activity, elicited in a disinhibited network by bath-applying strychnine (glycinergic blocker) and bicuculline (GABAergic blocker), consisted of slow spontaneous bursting. Under these conditions, the recorded bursts were coordinated in 1: 1 relationships at all segmental levels. For each cycle, a leading segment initiated the activity that then propagated in a metachronal way through adjacent segments along the length of spinal cord. There was both regional non-linearity and directional asymmetry in this burst propagation: motor bursts propagated most rapidly in the thoracic spinal cord and the rostro-caudal wave travelled faster than the caudo-rostral one. Propagation involved both long projecting fibres and local intersegmental connections. These results suggest that the mammalian spinal cord contains propriospinal pathways subserving a metachronal transmission of motor information and that normally it may be involved in coordinating various parts of the body. The simple model developed here could be useful in unravelling more general mechanisms of neuronal circuit coupling.
Collapse
|
27
|
Gabbay H, Lev-Tov A. Alpha-1 Adrenoceptor Agonists Generate a “Fast” NMDA Receptor-Independent Motor Rhythm in the Neonatal Rat Spinal Cord. J Neurophysiol 2004; 92:997-1010. [PMID: 15084642 DOI: 10.1152/jn.00205.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Noradrenaline, a potent activator of rhythmogenic networks in adult mammals has not been reported to produce functional rhythmic patterns in isolated spinal cords of newborn rats. We now show that a “fast” (cycle time: 1–4 s) transient rhythm was induced in sacrococcygeal (SC) and rostral-lumbar spinal segments of the neonatal rat by bath-applied noradrenaline. The fast rhythm was blocked by 1 μM of the α1-adrenoceptor antagonist prazosin but not by 1–20 μM of the α2-adrenoceptor blocker yohimbine, it could be initiated and maintained by α1-adrenoceptor agonists, and it was accompanied by a slow nonlocomotor rhythm. Transection at the lumbosacral junction abolished the fast-thoracolumbar (TL) rhythm while the fast-SC and slow-TL rhythms were unaffected. The N-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5) abolished the slow- and did not interrupt the fast rhythm. Thus α1-adrenoceptor agonists induce an NMDA receptor-independent rhythm in the SC cord and modulate NMDA receptor-dependent rhythmicity in TL segments. Injection of current steps into S2 and flexor-dominated L2 motoneurons during the fast rhythm revealed a 20–30% decrease in input-resistance ( RN), coinciding with contralateral bursting. The RN of extensor-dominated L5 motoneurons did not vary with the fast rhythm. The rhythmic fluctuations of RN in L2 motoneurons were abolished, but the alternating left-right pattern of the fast rhythm was unchanged in midsagittally split TL cords. We suggest that the locomotor generators were not activated during the fast rhythm, that crossed-inhibitory pathways activated by SC projections controlled the rhythmic decrease in RN in L2 motoneurons, and that the alternating pattern of the split TL cord was maintained by excitatory SC projections.
Collapse
Affiliation(s)
- H Gabbay
- Dept. of Anatomy and Cell Biology, The Hebrew University Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
28
|
Strauss I, Lev-Tov A. Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats. J Neurophysiol 2003; 89:773-84. [PMID: 12574455 DOI: 10.1152/jn.00716.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Projections of sacrocaudal afferents (SCA) onto lumbar pattern generators were studied in isolated spinal cords of neonatal rats. A locomotor-like pattern could be produced by SCA stimulation in the majority of the preparations. The SCA-induced lumbar rhythm was abolished after blocking synaptic transmission in the sacrococcygeal (SC) cord by bathing its segments in a low-calcium, high-magnesium artificial cerebrospinal fluid and restored when the synaptic block was alleviated by local application of calcium onto specific SC segments prior to SCA stimulation. Thus the SCA evoked lumbar rhythm involves synaptic activation of relay neurons in the SC cord. Functional activation of these relays depends on non-N-methyl-D-aspartate (NMDA) receptors because the lumbar rhythm was abolished when the non-NMDA receptor antagonist CNQX was added to the SC cord. By contrast, pharmacological block of the rhythmicity in the SC cord by specific antagonists of NMDA receptors and alpha1 and alpha2 adrenoceptors did not impair the SCA-induced lumbar rhythm. Midsagittal splitting experiments of parts of the SC and lumbar cord revealed that crossed and uncrossed ascending/propriospinal pathways are coactivated by SCA stimulation. We suggest that these pathways ascend onto the thoracolumbar cord through the lateral, ventrolateral, and ventral funiculi, because a complete block of the lumbar rhythm could only be obtained with a bilateral interruption of all of these funiculi. The relevance of our findings to the neural control of the rhythmogenic networks in the spinal cord is discussed.
Collapse
Affiliation(s)
- I Strauss
- Department of Anatomy and Cell Biology The Hebrew University Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|