1
|
Falardeau D, Dubois S, Kolta A. The coordination of chewing. Curr Opin Neurobiol 2023; 83:102805. [PMID: 37913688 DOI: 10.1016/j.conb.2023.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Feeding behavior involves a complex organization of neural circuitry and interconnected pathways between the cortex, the brainstem, and muscles. Elevated synchronicity is required starting from the moment the animal brings the food to its mouth, chews, and initiates subsequent swallowing. Moreover, orofacial sensory and motor systems are coordinated in a way to optimize movement patterns as a result of integrating information from premotor neurons. Recent studies have uncovered significant discoveries employing various and creative techniques in order to identify key components in these vital functions. Here, we attempt to provide a brief overview of our current knowledge on orofacial systems. While our focus will be on recent breakthroughs regarding the masticatory machinery, we will also explore how it is sometimes intertwined with other functions, such as swallowing and limb movement.
Collapse
Affiliation(s)
- Dominic Falardeau
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), QC, Canada; Department of Neurosciences, Faculty of Medecine, Université de Montréal, QC, Canada
| | - Sophia Dubois
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), QC, Canada; Department of Neurosciences, Faculty of Medecine, Université de Montréal, QC, Canada
| | - Arlette Kolta
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), QC, Canada; Department of Neurosciences, Faculty of Medecine, Université de Montréal, QC, Canada; Department of Stomatology, Faculty of Dentistry, Université de Montréal, QC, Canada.
| |
Collapse
|
2
|
Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022; 70:1506-1519. [PMID: 35212422 DOI: 10.1002/glia.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Central pattern generators (CPGs) generate the rhythmic and coordinated neural features necessary for the proper conduction of complex behaviors. In particular, CPGs are crucial for complex motor behaviors such as locomotion, mastication, respiration, and vocal production. While the importance of these networks in modulating behavior is evident, the mechanisms driving these CPGs are still not fully understood. On the other hand, accumulating evidence suggests that astrocytes have a significant role in regulating the function of some of these CPGs. Here, we review the location, function, and role of astrocytes in locomotion, respiration, and mastication CPGs and propose that, similarly, astrocytes may also play a significant role in the vocalization CPG.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
4
|
Abstract
Little is known about the effects of undernutrition on the specific muscles and neuronal circuits involved in mastication. The aim of this study was to document the effects of neonatal low-protein diet on masticatory efficiency. Newborn rats whose mothers were fed 17% (nourished (N), n 60) or 8% (undernourished (U), n 56) protein were compared. Their weight was monitored and their masticatory jaw movements were video-recorded. Whole-cell patch-clamp recordings were performed in brainstem slice preparations to investigate the intrinsic membrane properties and N-methyl-d-aspartate-induced bursting characteristics of the rhythmogenic neurons (N, n 43; U, n 39) within the trigeminal main sensory nucleus (NVsnpr). Morphometric analysis (N, n 4; U, n 5) were conducted on masseteric muscles serial cross-sections. Our results showed that undernourished animals had lower numbers of masticatory sequences (P=0·049) and cycles (P=0·045) and slower chewing frequencies (P=0·004) (N, n 32; U, n 28). Undernutrition reduced body weight but had little effect on many basic NVsnpr neuronal electrophysiological parameters. It did, however, affect sag potentials (P<0·001) and rebound firing (P=0·005) that influence firing pattern. Undernutrition delayed the appearance of bursting and reduced the propensity to burst (P=0·002), as well as the bursting frequency (P=0·032). Undernourished animals showed increased and reduced proportions of fibre type IIA (P<0·0001) and IIB (P<0·0001), respectively. In addition, their fibre areas (IIA, P<0·001; IIB, P<0·001) and perimeters (IIA, P<0·001; IIB, P<0·001) were smaller. The changes observed at the behavioural, neuronal and muscular levels suggest that undernutrition reduces chewing efficiency by slowing, weakening and delaying maturation of the masticatory muscles and the associated neuronal circuitry.
Collapse
|
5
|
Morquette P, Verdier D, Kadala A, Féthière J, Philippe AG, Robitaille R, Kolta A. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci 2015; 18:844-54. [PMID: 25938883 DOI: 10.1038/nn.4013] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/02/2015] [Indexed: 12/22/2022]
Abstract
Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca(2+) concentration ([Ca(2+)]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca(2+) chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100β, an astrocytic Ca(2+)-binding protein, to the extracellular space, while application of an anti-S100β antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity.
Collapse
Affiliation(s)
- Philippe Morquette
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - Dorly Verdier
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - Aklesso Kadala
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - James Féthière
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Antony G Philippe
- 1] Faculté des Sciences du Sport, Université Montpellier 1, Montpellier, France. [2] Institut National de la Recherche Agronomique, UMR866 Dynamique Musculaire Et Métabolisme, Montpellier, France
| | - Richard Robitaille
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - Arlette Kolta
- 1] Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada. [2] Faculté de Médecine Dentaire and Réseau de Recherche en Santé Bucco-dentaire et Osseuse du Fonds de Recherche Québec-Santé, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res 2012; 222:113-23. [PMID: 22855309 DOI: 10.1007/s00221-012-3200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.
Collapse
|
7
|
Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol 2012; 96:340-55. [PMID: 22342735 DOI: 10.1016/j.pneurobio.2012.01.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
The basic pattern of rhythmic jaw movements produced during mastication is generated by a neuronal network located in the brainstem and referred to as the masticatory central pattern generator (CPG). This network composed of neurons mostly associated to the trigeminal system is found between the rostral borders of the trigeminal motor nucleus and facial nucleus. This review summarizes current knowledge on the anatomical organization, the development, the connectivity and the cellular properties of these trigeminal circuits in relation to mastication. Emphasis is put on a population of rhythmogenic neurons in the dorsal part of the trigeminal sensory nucleus. These neurons have intrinsic bursting capabilities, supported by a persistent Na(+) current (I(NaP)), which are enhanced when the extracellular concentration of Ca(2+) diminishes. Presented evidence suggest that the Ca(2+) dependency of this current combined with its voltage-dependency could provide a mechanism for cortical and sensory afferent inputs to the nucleus to interact with the rhythmogenic properties of its neurons to adjust and adapt the rhythmic output. Astrocytes are postulated to contribute to this process by modulating the extracellular Ca(2+) concentration and a model is proposed to explain how functional microdomains defined by the boundaries of astrocytic syncitia may form under the influence of incoming inputs.
Collapse
Affiliation(s)
- Philippe Morquette
- Groupe de Recherche sur le Système Nerveux Central du FRSQ, Université de Montréal and Faculté de médecine dentaire, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Westberg KG, Kolta A. The trigeminal circuits responsible for chewing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:77-98. [PMID: 21708308 DOI: 10.1016/b978-0-12-385198-7.00004-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mastication is a vital function that ensures that ingested food is broken down into pieces and prepared for digestion. This review outlines the masticatory behavior in terms of the muscle activation patterns and jaw movements and gives an overview of the organization and function of the trigeminal neuronal circuits that are known to take part in the generation and control of oro-facial motor functions. The basic pattern of rhythmic jaw movements produced during mastication is generated by a Central Pattern Generator (CPG) located in the pons and medulla. Neurons within the CPG have intrinsic properties that produce a rhythmic activity, but the output of these neurons is modified by inputs that descend from the higher centers of the brain, and by feedback from sensory receptors, in order to constantly adapt the movement to the food properties.
Collapse
Affiliation(s)
- Karl-Gunnar Westberg
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
9
|
Kolta A, Morquette P, Lavoie R, Arsenault I, Verdier D. Modulation of rhythmogenic properties of trigeminal neurons contributing to the masticatory CPG. BREATHE, WALK AND CHEW: THE NEURAL CHALLENGE: PART I 2010; 187:137-48. [DOI: 10.1016/b978-0-444-53613-6.00009-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|