1
|
Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD. Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis. eLife 2021; 10:62147. [PMID: 34282726 PMCID: PMC8315794 DOI: 10.7554/elife.62147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.
Collapse
Affiliation(s)
- Sayali V Gore
- Department of Neuroscience, Brown University, Providence, United States
| | - Eric J James
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Jenn J Park
- Department of Neuroscience, Brown University, Providence, United States
| | - Andrea Berghella
- Department of Neuroscience, Brown University, Providence, United States
| | - Adrian C Thompson
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
2
|
Busch SE, Khakhalin AS. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience. J Neurophysiol 2019; 122:1084-1096. [PMID: 31291161 DOI: 10.1152/jn.00099.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a biological neural network to be functional, its neurons need to be connected with synapses of appropriate strength, and each neuron needs to appropriately respond to its synaptic inputs. This second aspect of network tuning is maintained by intrinsic plasticity; yet it is often considered secondary to changes in connectivity and mostly limited to adjustments of overall excitability of each neuron. Here we argue that even nonoscillatory neurons can be tuned to inputs of different temporal dynamics and that they can routinely adjust this tuning to match the statistics of their synaptic activation. Using the dynamic clamp technique, we show that, in the tectum of Xenopus tadpole, neurons become selective for faster inputs when animals are exposed to fast visual stimuli but remain responsive to longer inputs in animals exposed to slower, looming, or multisensory stimulation. We also report a homeostatic cotuning between synaptic and intrinsic temporal properties of individual tectal cells. These results expand our understanding of intrinsic plasticity in the brain and suggest that there may exist an additional dimension of network tuning that has been so far overlooked.NEW & NOTEWORTHY We use dynamic clamp to show that individual neurons in the tectum of Xenopus tadpoles are selectively tuned to either shorter (more synchronous) or longer (less synchronous) synaptic inputs. We also demonstrate that this intrinsic temporal tuning is strongly shaped by sensory experiences. This new phenomenon, which is likely to be mediated by changes in sodium channel inactivation, is bound to have important consequences for signal processing and the development of local recurrent connections.
Collapse
Affiliation(s)
- Silas E Busch
- Biology Program, Bard College, Annandale-on-Hudson, New York
| | | |
Collapse
|
3
|
Liu Z, Donnelly KB, Pratt KG. Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons. J Vis Exp 2018. [PMID: 29608176 DOI: 10.3791/57465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Xenopus tadpole retinotectal circuit, comprised of the retinal ganglion cells (RGCs) in the eye which form synapses directly onto neurons in the optic tectum, is a popular model to study how neural circuits self-assemble. The ability to carry out whole cell patch clamp recordings from tectal neurons and to record RGC-evoked responses, either in vivo or using a whole brain preparation, has generated a large body of high-resolution data about the mechanisms underlying normal, and abnormal, circuit formation and function. Here we describe how to perform the in vivo preparation, the original whole brain preparation, and a more recently developed horizontal brain slice preparation for obtaining whole cell patch clamp recordings from tectal neurons. Each preparation has unique experimental advantages. The in vivo preparation enables the recording of the direct response of tectal neurons to visual stimuli projected onto the eye. The whole brain preparation allows for the RGC axons to be activated in a highly controlled manner, and the horizontal brain slice preparation allows recording from across all layers of the tectum.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming
| | - Katelynne B Donnelly
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming;
| |
Collapse
|
4
|
Gambrill AC, Faulkner RL, Cline HT. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles. J Neurophysiol 2018; 119:1947-1961. [PMID: 29442555 DOI: 10.1152/jn.00051.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circuit controlling visually guided behavior in nonmammalian vertebrates, such as Xenopus tadpoles, includes retinal projections to the contralateral optic tectum, where visual information is processed, and tectal motor outputs projecting ipsilaterally to hindbrain and spinal cord. Tadpoles have an intertectal commissure whose function is unknown, but it might transfer information between the tectal lobes. Differences in visual experience between the two eyes have profound effects on the development and function of visual circuits in animals with binocular vision, but the effects on animals with fully crossed retinal projections are not clear. We tested the effect of monocular visual experience on the visuomotor circuit in Xenopus tadpoles. We show that cutting the intertectal commissure or providing visual experience to one eye (monocular visual experience) is sufficient to disrupt tectally mediated visual avoidance behavior. Monocular visual experience induces asymmetry in tectal circuit activity across the midline. Repeated exposure to monocular visual experience drives maturation of the stimulated retinotectal synapses, seen as increased AMPA-to-NMDA ratios, induces synaptic plasticity in intertectal synaptic connections, and induces bilaterally asymmetric changes in the tectal excitation-to-inhibition ratio (E/I). We show that unilateral expression of peptides that interfere with AMPA or GABAA receptor trafficking alters E/I in the transfected tectum and is sufficient to degrade visuomotor behavior. Our study demonstrates that monocular visual experience in animals with fully crossed visual systems produces asymmetric circuit function across the midline and degrades visuomotor behavior. The data further suggest that intertectal inputs are an integral component of a bilateral visuomotor circuit critical for behavior. NEW & NOTEWORTHY The developing optic tectum of Xenopus tadpoles represents a unique circuit in which laterally positioned eyes provide sensory input to a circuit that is transiently monocular, but which will be binocular in the animal's adulthood. We challenge the idea that the two lobes of tadpole optic tectum function independently by testing the requirement of interhemispheric communication and demonstrate that unbalanced sensory input can induce structural and functional plasticity in the tectum sufficient to disrupt function.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
5
|
Birinyi A, Rácz N, Kecskes S, Matesz C, Kovalecz G. Neural circuits underlying jaw movements for the prey-catching behavior in frog: distribution of vestibular afferent terminals on motoneurons supplying the jaw. Brain Struct Funct 2017; 223:1683-1696. [PMID: 29189907 DOI: 10.1007/s00429-017-1581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
Coordinated movement of the jaw is essential for catching and swallowing the prey. The majority of the jaw muscles in frogs are supplied by the trigeminal motoneurons. We have previously described that the primary vestibular afferent fibers, conveying information about the movements of the head, established close appositions on the motoneurons of trigeminal nerve providing one of the morphological substrates of monosynaptic sensory modulation of prey-catching behavior in the frog. The aim of our study was to reveal the spatial distribution of vestibular close appositions on the somatodendritic compartments of the functionally different trigeminal motoneurons. In common water frogs, the vestibular and trigeminal nerves were simultaneously labeled with different fluorescent dyes and the possible direct contacts between vestibular afferents and trigeminal motoneurons were identified with the help of DSD2 attached to an Andor Zyla camera. In the rhombencephalon, an overlapping area was detected between the incoming vestibular afferents and trigeminal motoneurons along the whole extent of the trigeminal motor nucleus. The vestibular axon collaterals formed large numbers of close appositions with dorsomedial and ventrolateral dendrites of trigeminal motoneurons. The majority of direct contacts were located on proximal dendritic segments closer than 300 µm to the somata. The identified contacts were evenly distributed on rostral motoneurons innervating jaw-closing muscles and motoneurons supplying jaw-opening muscles and located in the caudal part of trigeminal nucleus. We suggest that the identified contacts between vestibular axon terminals and trigeminal motoneurons may constitute one of the morphological substrates of a very quick response detected in trigeminal motoneurons during head movements.
Collapse
Affiliation(s)
- András Birinyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| | - Nóra Rácz
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szilvia Kecskes
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Clara Matesz
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,MTA-DE Neuroscience Research Group, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,Department of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gabriella Kovalecz
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| |
Collapse
|
6
|
Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System. J Neurosci 2017; 36:10356-10375. [PMID: 27707971 DOI: 10.1523/jneurosci.4147-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/01/2016] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormone (TH) regulates many cellular events underlying perinatal brain development in vertebrates. Whether and how TH regulates brain development when neural circuits are first forming is less clear. Furthermore, although the molecular mechanisms that impose spatiotemporal constraints on TH action in the brain have been described, the effects of local TH signaling are poorly understood. We determined the effects of manipulating TH signaling on development of the optic tectum in stage 46-49 Xenopus laevis tadpoles. Global TH treatment caused large-scale morphological effects in tadpoles, including changes in brain morphology and increased tectal cell proliferation. Either increasing or decreasing endogenous TH signaling in tectum, by combining targeted DIO3 knockdown and methimazole, led to corresponding changes in tectal cell proliferation. Local increases in TH, accomplished by injecting suspensions of tri-iodothyronine (T3) in coconut oil into the midbrain ventricle or into the eye, selectively increased tectal or retinal cell proliferation, respectively. In vivo time-lapse imaging demonstrated that local TH first increased tectal progenitor cell proliferation, expanding the progenitor pool, and subsequently increased neuronal differentiation. Local T3 also dramatically increased dendritic arbor growth in neurons that had already reached a growth plateau. The time-lapse data indicate that the same cells are differentially sensitive to T3 at different time points. Finally, TH increased expression of genes pertaining to proliferation and neuronal differentiation. These experiments indicate that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting cell proliferation and differentiation and by acting on neurons to increase dendritic arbor elaboration. SIGNIFICANCE STATEMENT Thyroid hormone (TH) is a critical regulator of perinatal brain development in vertebrates. Abnormal TH signaling in early pregnancy is associated with significant cognitive deficits in humans; however, it is difficult to probe the function of TH in early brain development in mammals because of the inaccessibility of the fetal brain in the uterine environment and the challenge of disambiguating maternal versus fetal contributions of TH. The external development of tadpoles allows manipulation and direct observation of the molecular and cellular mechanisms underlying TH's effects on brain development in ways not possible in mammals. We find that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting neural progenitor cell proliferation and differentiation and by acting on neurons to enhance dendritic arbor elaboration.
Collapse
|
7
|
Lipovsek M, Ledderose J, Butts T, Lafont T, Kiecker C, Wizenmann A, Graham A. The emergence of mesencephalic trigeminal neurons. Neural Dev 2017. [PMID: 28637511 PMCID: PMC5480199 DOI: 10.1186/s13064-017-0088-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The cells of the mesencephalic trigeminal nucleus (MTN) are the proprioceptive sensory neurons that innervate the jaw closing muscles. These cells differentiate close to the two key signalling centres that influence the dorsal midbrain, the isthmus, which mediates its effects via FGF and WNT signalling and the roof plate, which is a major source of BMP signalling as well as WNT signalling. Methods In this study, we have set out to analyse the importance of FGF, WNT and BMP signalling for the development of the MTN. We have employed pharmacological inhibitors of these pathways in explant cultures as well as utilising the electroporation of inhibitory constructs in vivo in the chick embryo. Results We find that interfering with either FGF or WNT signalling has pronounced effects on MTN development whilst abrogation of BMP signalling has no effect. We show that treatment of explants with either FGF or WNT antagonists results in the generation of fewer MTN neurons and affects MTN axon extension and that inhibition of both these pathways has an additive effect. To complement these studies, we have used in vivo electroporation to inhibit BMP, FGF and WNT signalling within dorsal midbrain cells prior to, and during, their differentiation as MTN neurons. Again, we find that inhibition of BMP signalling has no effect on the development of MTN neurons. We additionally find that cells electroporated with inhibitory constructs for either FGF or WNT signalling can differentiate as MTN neurons suggesting that these pathways are not required cell intrinsically for the emergence of these neurons. Indeed, we also show that explants of dorsal mesencephalon lacking both the isthmus and roof plate can generate MTN neurons. However, we did find that inhibiting FGF or WNT signalling had consequences for MTN differentiation. Conclusions Our results suggest that the emergence of MTN neurons is an intrinsic property of the dorsal mesencephalon of gnathostomes, and that this population undergoes expansion, and maturation, along with the rest of the dorsal midbrain under the influence of FGF and WNT signalling.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Julia Ledderose
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany.,Universitätsmedizin Berlin, NeuroCure - Institute of Biochemistry, ChariteCrossOver, Virchowweg, 610117, Berlin, Germany
| | - Thomas Butts
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK.,School of Life Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Tanguy Lafont
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Clemens Kiecker
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany
| | - Anthony Graham
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK.
| |
Collapse
|
8
|
Hamodi AS, Liu Z, Pratt KG. An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum. eLife 2016; 5. [PMID: 27879199 PMCID: PMC5135393 DOI: 10.7554/elife.20502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
In the vertebrate CNS, afferent sensory inputs are targeted to specific depths or layers of their target neuropil. This patterning exists ab initio, from the very beginning, and therefore has been considered an activity-independent process. However, here we report that, during circuit development, the subcellular segregation of the visual and mechanosensory inputs to specific regions of tectal neuron dendrites in the tadpole optic tectum requires NMDA receptor activity. Blocking NMDARs during the formation of these sensory circuits, or removing the visual set of inputs, leads to less defined segregation, and suggests a correlation-based mechanism in which correlated inputs wire to common regions of dendrites. This can account for how two sets of inputs form synapses onto different regions of the same dendrite. Blocking NMDA receptors during later stages of circuit development did not disrupt segregation, indicating a critical period for activity-dependent shaping of patterns of innervation. DOI:http://dx.doi.org/10.7554/eLife.20502.001
Collapse
Affiliation(s)
- Ali S Hamodi
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, United States
| | - Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, United States
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, United States
| |
Collapse
|
9
|
Ciarleglio CM, Khakhalin AS, Wang AF, Constantino AC, Yip SP, Aizenman CD. Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity. eLife 2015; 4. [PMID: 26568314 PMCID: PMC4728129 DOI: 10.7554/elife.11351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022] Open
Abstract
Biophysical properties of neurons become increasingly diverse over development, but mechanisms underlying and constraining this diversity are not fully understood. Here we investigate electrophysiological characteristics of Xenopus tadpole midbrain neurons across development and during homeostatic plasticity induced by patterned visual stimulation. We show that in development tectal neuron properties not only change on average, but also become increasingly diverse. After sensory stimulation, both electrophysiological diversity and functional differentiation of cells are reduced. At the same time, the amount of cross-correlations between cell properties increase after patterned stimulation as a result of homeostatic plasticity. We show that tectal neurons with similar spiking profiles often have strikingly different electrophysiological properties, and demonstrate that changes in intrinsic excitability during development and in response to sensory stimulation are mediated by different underlying mechanisms. Overall, this analysis and the accompanying dataset provide a unique framework for further studies of network maturation in Xenopus tadpoles.
Collapse
Affiliation(s)
- Christopher M Ciarleglio
- Biology Program, Brown University, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Arseny S Khakhalin
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Angelia F Wang
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Alexander C Constantino
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Sarah P Yip
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| | - Carlos D Aizenman
- Biology Program, Bard College, Annandale-on-Hudson, United States.,Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
10
|
Hamodi AS, Pratt KG. The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum. J Neurophysiol 2014; 113:400-7. [PMID: 25343786 DOI: 10.1152/jn.00672.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Xenopus tadpole optic tectum is a multisensory processing center that receives direct visual input as well as nonvisual mechanosensory input. The tectal neurons that comprise the optic tectum are organized into layers. These neurons project their dendrites laterally into the neuropil where visual inputs target the distal region of the dendrite and nonvisual inputs target the proximal region of the same dendrite. The Xenopus tadpole tectum is a popular model to study the development of sensory circuits. However, whole cell patch-clamp electrophysiological studies of the tadpole tectum (using the whole brain or in vivo preparations) have focused solely on the deep-layer tectal neurons because only neurons of the deep layer are visible and accessible for whole cell electrophysiological recordings. As a result, whereas the development and plasticity of these deep-layer neurons has been well-studied, essentially nothing has been reported about the electrophysiology of neurons residing beyond this layer. Hence, there exists a large gap in our understanding about the functional development of the amphibian tectum as a whole. To remedy this, we developed a novel isolated brain preparation that allows visualizing and recording from all layers of the tectum. We refer to this preparation as the "horizontal brain slice preparation." Here, we describe the preparation method and illustrate how it can be used to characterize the electrophysiology of neurons across all of the layers of the tectum as well as the spatial pattern of synaptic input from the different sensory modalities.
Collapse
Affiliation(s)
- Ali S Hamodi
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
11
|
Khakhalin AS, Koren D, Gu J, Xu H, Aizenman CD. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. Eur J Neurosci 2014; 40:2948-62. [PMID: 24995793 DOI: 10.1111/ejn.12664] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/24/2023]
Abstract
Information processing in the vertebrate brain is thought to be mediated through distributed neural networks, but it is still unclear how sensory stimuli are encoded and detected by these networks, and what role synaptic inhibition plays in this process. Here we used a collision avoidance behavior in Xenopus tadpoles as a model for stimulus discrimination and recognition. We showed that the visual system of the tadpole is selective for behaviorally relevant looming stimuli, and that the detection of these stimuli first occurs in the optic tectum. By comparing visually guided behavior, optic nerve recordings, excitatory and inhibitory synaptic currents, and the spike output of tectal neurons, we showed that collision detection in the tadpole relies on the emergent properties of distributed recurrent networks within the tectum. We found that synaptic inhibition was temporally correlated with excitation, and did not actively sculpt stimulus selectivity, but rather it regulated the amount of integration between direct inputs from the retina and recurrent inputs from the tectum. Both pharmacological suppression and enhancement of synaptic inhibition disrupted emergent selectivity for looming stimuli. Taken together these findings suggested that, by regulating the amount of network activity, inhibition plays a critical role in maintaining selective sensitivity to behaviorally-relevant visual stimuli.
Collapse
Affiliation(s)
- Arseny S Khakhalin
- Department of Neuroscience, Brown University, Box G-LN, Providence, RI, 02912, USA
| | | | | | | | | |
Collapse
|
12
|
Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion. Proc Natl Acad Sci U S A 2014; 111:3591-6. [PMID: 24550483 DOI: 10.1073/pnas.1401459111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neural control of movements in vertebrates is based on a set of modules, like the central pattern generator networks (CPGs) in the spinal cord coordinating locomotion. Sensory feedback is not required for the CPGs to generate the appropriate motor pattern and neither a detailed control from higher brain centers. Reticulospinal neurons in the brainstem activate the locomotor network, and the same neurons also convey signals from higher brain regions, such as turning/steering commands from the optic tectum (superior colliculus). A tonic increase in the background excitatory drive of the reticulospinal neurons would be sufficient to produce coordinated locomotor activity. However, in both vertebrates and invertebrates, descending systems are in addition phasically modulated because of feedback from the ongoing CPG activity. We use the lamprey as a model for investigating the role of this phasic modulation of the reticulospinal activity, because the brainstem-spinal cord networks are known down to the cellular level in this phylogenetically oldest extant vertebrate. We describe how the phasic modulation of reticulospinal activity from the spinal CPG ensures reliable steering/turning commands without the need for a very precise timing of on- or offset, by using a biophysically detailed large-scale (19,600 model neurons and 646,800 synapses) computational model of the lamprey brainstem-spinal cord network. To verify that the simulated neural network can control body movements, including turning, the spinal activity is fed to a mechanical model of lamprey swimming. The simulations also predict that, in contrast to reticulospinal neurons, tectal steering/turning command neurons should have minimal frequency adaptive properties, which has been confirmed experimentally.
Collapse
|
13
|
Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013; 6:1057-65. [PMID: 23929939 PMCID: PMC3759326 DOI: 10.1242/dmm.012138] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Xenopus tadpole model offers many advantages for studying the molecular, cellular and network mechanisms underlying neurodevelopmental disorders. Essentially every stage of normal neural circuit development, from axon outgrowth and guidance to activity-dependent homeostasis and refinement, has been studied in the frog tadpole, making it an ideal model to determine what happens when any of these stages are compromised. Recently, the tadpole model has been used to explore the mechanisms of epilepsy and autism, and there is mounting evidence to suggest that diseases of the nervous system involve deficits in the most fundamental aspects of nervous system function and development. In this Review, we provide an update on how tadpole models are being used to study three distinct types of neurodevelopmental disorders: diseases caused by exposure to environmental toxicants, epilepsy and seizure disorders, and autism.
Collapse
Affiliation(s)
- Kara G. Pratt
- University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | | |
Collapse
|
14
|
Khakhalin AS, Aizenman CD. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles. PLoS One 2012; 7:e34446. [PMID: 22496804 PMCID: PMC3319581 DOI: 10.1371/journal.pone.0034446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
In the developing mammalian brain, gamma-aminobutyric acid (GABA) is thought to play an excitatory rather than an inhibitory role due to high levels of intracellular Cl(-) in immature neurons. This idea, however, has been questioned by recent studies which suggest that glucose-based artificial cerebrospinal fluid (ACSF) may be inadequate for experiments on immature and developing brains. These studies suggest that immature neurons may require alternative energy sources, such as lactate or pyruvate. Lack of these other energy sources is thought to result in artificially high intracellular Cl(-) concentrations, and therefore a more depolarized GABA receptor (GABAR) reversal potential. Since glucose metabolism can vary widely among different species, it is important to test the effects of these alternative energy sources on different experimental preparations. We tested whether pyruvate affects GABAergic transmission in isolated brains of developing wild type Xenopus tadpoles in vitro by recording the responsiveness of tectal neurons to optic nerve stimulation, and by measuring currents evoked by local GABA application in a gramicidin perforated patch configuration. We found that, in contrast with previously reported results, the reversal potential for GABAR-mediated currents does not change significantly between developmental stages 45 and 49. Partial substitution of glucose by pyruvate had only minor effects on both the GABA reversal potential, and the responsiveness of tectal neurons at stages 45 and 49. Total depletion of energy sources from the ACSF did not affect neural responsiveness. We also report a strong spatial gradient in GABA reversal potential, with immature cells adjacent to the lateral and caudal proliferative zones having more positive reversal potentials. We conclude that in this experimental preparation standard glucose-based ACSF is an appropriate extracellular media for in vitro experiments.
Collapse
Affiliation(s)
| | - Carlos D. Aizenman
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
15
|
Sharma P, Cline HT. Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1. Neuron 2010; 68:442-55. [PMID: 21040846 DOI: 10.1016/j.neuron.2010.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 11/30/2022]
Abstract
Regulation of progenitor cell fate determines the numbers of neurons in the developing brain. While proliferation of neural progenitors predominates during early central nervous system (CNS) development, progenitor cell fate shifts toward differentiation as CNS circuits develop, suggesting that signals from developing circuits may regulate proliferation and differentiation. We tested whether activity regulates neurogenesis in vivo in the developing visual system of Xenopus tadpoles. Both cell proliferation and the number of musashi1-immunoreactive progenitors in the optic tectum decrease as visual system connections become stronger. Visual deprivation for 2 days increased proliferation of musashi1-immunoreactive radial glial progenitors, while visual experience increased neuronal differentiation. Morpholino-mediated knockdown and overexpression of musashi1 indicate that musashi1 is necessary and sufficient for neural progenitor proliferation in the CNS. These data demonstrate a mechanism by which increased brain activity in developing circuits decreases cell proliferation and increases neuronal differentiation through the downregulation of musashi1 in response to circuit activity.
Collapse
Affiliation(s)
- Pranav Sharma
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Huang W, Xiu Y, Yan JA, He WJ, Zhao YD, Hu ZA, Ruan HZ. Facilitation of Ih channels by P2Y1 receptors activation in Mesencephalic trigeminal neurons. Neurosci Lett 2010; 482:156-9. [PMID: 20643189 DOI: 10.1016/j.neulet.2010.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/03/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022]
Abstract
P2Y(1) receptors, a subset of G-protein coupled receptors, have been shown to participate in sensory transduction in the periphery nervous system. However, little is known about their sensory function in the central nervous system. Here, by using immunohistochemistry, we showed that P2Y(1) receptors are predominantly localized in the somata of Mesencephalic trigeminal neurons (Mes V neurons), the primary sensory neurons in brainstem. Whole-cell voltage-clamp recording revealed that ADP-beta-S, a P2Y receptor agonist, enhanced the activity of hyperpolarization-activated cation channels (Ih channels) in Mes V neurons and that the activity-enhancing effect of ADP-beta-S could be blocked by a specific P2Y(1) receptor antagonist, MRS 2179. Taken together, these results suggested a possible role of P2Y(1) receptors in the information transduction of central sensory neurons through regulating Ih channel activities.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurobiology, College of Basic Medical Sciences, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Richards BA, Aizenman CD, Akerman CJ. In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis. Front Synaptic Neurosci 2010; 2:7. [PMID: 21423493 PMCID: PMC3059697 DOI: 10.3389/fnsyn.2010.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/17/2010] [Indexed: 02/04/2023] Open
Abstract
Spike-timing-dependent plasticity (STDP) is found in vivo in a variety of systems and species, but the first demonstrations of in vivo STDP were carried out in the optic tectum of Xenopus laevis embryos. Since then, the optic tectum has served as an excellent experimental model for studying STDP in sensory systems, allowing researchers to probe the developmental consequences of this form of synaptic plasticity during early development. In this review, we will describe what is known about the role of STDP in shaping feed-forward and recurrent circuits in the optic tectum with a focus on the functional implications for vision. We will discuss both the similarities and differences between the optic tectum and mammalian sensory systems that are relevant to STDP. Finally, we will highlight the unique properties of the embryonic tectum that make it an important system for researchers who are interested in how STDP contributes to activity-dependent development of sensory computations.
Collapse
|
18
|
Ruthazer ES, Aizenman CD. Learning to see: patterned visual activity and the development of visual function. Trends Neurosci 2010; 33:183-92. [PMID: 20153060 DOI: 10.1016/j.tins.2010.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 11/17/2022]
Abstract
To successfully interact with their environments, developing organisms need to correctly process sensory information and generate motor outputs appropriate to their size and structure. Patterned sensory experience has long been known to induce various forms of developmental plasticity that ultimately shape mature neural circuits. These same types of plasticity also allow developing organisms to respond appropriately to the external world by dynamically adapting neural circuit function to ongoing changes in brain circuitry and sensory input. Recent work on the visual systems of frogs and fish has provided an unprecedented view into how visual experience dynamically affects circuit function at many levels, ranging from gene expression to network function, ultimately leading to system-wide functional adaptations.
Collapse
Affiliation(s)
- Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | | |
Collapse
|
19
|
Hiramoto M, Cline HT. Convergence of multisensory inputs in Xenopus tadpole tectum. Dev Neurobiol 2010; 69:959-71. [PMID: 19813244 DOI: 10.1002/dneu.20754] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits that integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye-labeling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer-specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively.
Collapse
Affiliation(s)
- Masaki Hiramoto
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
20
|
Deeg KE, Sears IB, Aizenman CD. Development of multisensory convergence in the Xenopus optic tectum. J Neurophysiol 2009; 102:3392-404. [PMID: 19793878 PMCID: PMC2804420 DOI: 10.1152/jn.00632.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/28/2009] [Indexed: 01/02/2023] Open
Abstract
The adult Xenopus optic tectum receives and integrates visual and nonvisual sensory information. Nonvisual inputs include mechanosensory inputs from the lateral line, auditory, somatosensory, and vestibular systems. While much is known about the development of visual inputs in this species, almost nothing is known about the development of mechanosensory inputs to the tectum. In this study, we investigated mechanosensory inputs to the tectum during critical developmental stages (stages 42-49) in which the retinotectal map is being established. Tract-tracing studies using lipophilic dyes revealed a large projection between the hindbrain and the tectum as early as stage 42; this projection carries information from the Vth, VIIth, and VIIIth nerves. By directly stimulating hindbrain and visual inputs using an isolated whole-brain preparation, we found that all tectal cells studied received both visual and hindbrain input during these early developmental stages. Pharmacological data indicated that the hindbrain-tectal projection is glutamatergic and that there are no direct inhibitory hindbrain-tectal ascending projections. We found that unlike visual inputs, hindbrain inputs do not show a decrease in paired-pulse facilitation over this developmental period. Interestingly, over this developmental period, hindbrain inputs show a transient increase followed by a significant decrease in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA)/N-methyl-D-aspartate (NMDA) ratio and show no change in quantal size, both in contrast to visual inputs. Our data support a model by which fibers are added to the hindbrain-tectal projection across development. Nascent fibers form new synapses with tectal neurons and primarily activate NMDA receptors. At a time when retinal ganglion cells and their tectal synapses mature, hindbrain-tectal synapses are still undergoing a period of rapid synaptogenesis. This study supports the idea that immature tectal cells receive converging visual and mechanosensory information and indicates that the Xenopus tectum might be an ideal preparation to study the early development of potential multisensory interactions at the cellular level.
Collapse
Affiliation(s)
- Katherine E Deeg
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|