1
|
Birgfellner CMV, Soley JT, Polsterer E, Forstenpointner G, Weissengruber GE. The graviportal spine: Epaxial muscles of the African savanna elephant (Loxodonta africana). Anat Histol Embryol 2023; 52:135-147. [PMID: 35988023 DOI: 10.1111/ahe.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022]
Abstract
In this study, we present not only a new and detailed anatomical description of the epaxial muscles and adjacent ligamentous and fascial structures in the African savanna elephant but also a structural and functional comparison with other Afrotherian mammals and some domestic quadrupeds. All structures were examined by means of standard anatomical techniques. The back of the largest land mammal is a crucial part of trunk construction according to the bow and string concept, which is applied also in other quadrupedal animals. The epaxial muscles of the African savanna elephant play an important role in the biomechanical properties of the entire back and in supporting and moving the heavy head. Situated in the short cervical region of the African savanna elephant is a large mass comprised of numerous muscle individuals together with a well-developed ligamentum nuchae. Parts of the mm. interansversarii ventralis cervicis form a strong muscle belly, which was named the m. intertransversarius longus. Whereas the head is held in a high or extended position most of the time during locomotion, the head and neck are highly mobile while the animal is foraging or socially interacting. Movements between the elements of the thoracic and lumbar spine are likely to be very limited due to the obvious rigidity of the bony vertebral column. Aponeuroses surrounding long epaxial muscles could contribute to an energy-saving mechanism, which is active during both stance and locomotion. The well-developed m. serratus dorsalis cranialis helps in facilitating effective breathing in an animal, which is equipped with an unusual pleural structure.
Collapse
Affiliation(s)
| | - John Thomson Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Eva Polsterer
- Institute of Morphology, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
2
|
Pleural Manometry—Basics for Clinical Practice. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose of Review
The aim of this paper is to present basic data on pleural manometry and to outline the advances in its use as both a research tool enabling a better understanding of pleural pathophysiology and as a clinical tool useful in management strategy planning in patients with pleural diseases. To discuss updates and current trends in the development of pleural manometry, a search of the literature on pleural manometry published in recent years was performed.
Recent Findings
The technique of pleural manometry has significantly evolved over the last 40 years from simple water manometers to electronic or digital devices which enable the measurement and recording of instantaneous pleural pressure. Although to date it is mainly used as a research tool, pleural manometry has the potential to be applied in clinical practice. Recent studies demonstrated that monitoring of pleural pressure changes during therapeutic thoracentesis does not seem to be helpful in predicting re-expansion pulmonary edema and procedure-related chest discomfort. On the other hand, measurement of pleural elastance plays an important role in the diagnosis of unexpandable lung in patients with malignant pleural effusion facilitating determination of the optimal management strategy. Additionally, it allows for study of newly discovered phenomena, including pleural pressure pulse assessment and the impact of continuous positive airway pressure and cough on pleural pressure.
Summary
Pleural manometry is an established technique of pleural pressure measurement. Despite recent advances, its role in clinical practice remains undetermined.
Collapse
|
3
|
Recurrence of spontaneous pneumothorax six years after VATS pleurectomy: evidence for formation of neopleura. J Cardiothorac Surg 2020; 15:191. [PMID: 32723348 PMCID: PMC7389453 DOI: 10.1186/s13019-020-01233-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 12/03/2022] Open
Abstract
Background Primary Spontaneous Pneumothorax (PSP) is considered an absolute and definitive contraindication for scuba diving and professional flying, unless bilateral surgical pleurectomy is performed. Only then is there a sufficiently low risk of recurrence to allow a waiver for flying and/or diving. Case presentation A young fit male patient who suffered a PSP 6 years ago, and underwent an uncomplicated videoscopic surgical pleurectomy, presented with a complete collapse of the lung on the initial PSP side. Microscopic examination of biopsies showed a slightly inflamed tissue but otherwise normal mesothelial cells, compatible with newly formed pleura. Conclusions Even with pleurectomy, in this patient, residual mesothelial cells seem to have had the capacity to create a completely new pleura and pleural space. The most appropriate surgical technique for prevention of PSP may still be debated.
Collapse
|
4
|
Prstojevich A, Uetrecht M, Watkins SN, Milanick MA. Elephants, snorkels, pressures: modeling snorkeling at depth. ADVANCES IN PHYSIOLOGY EDUCATION 2019; 43:155-158. [PMID: 30933537 DOI: 10.1152/advan.00191.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Alex Prstojevich
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | - Morgan Uetrecht
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | - Sidney N Watkins
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | - Mark A Milanick
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
5
|
Thitaram C, Matchimakul P, Pongkan W, Tangphokhanon W, Maktrirat R, Khonmee J, Sathanawongs A, Kongtueng P, Nganvongpanit K. Histology of 24 organs from Asian elephant calves ( Elephas maximus). PeerJ 2018; 6:e4947. [PMID: 29915694 PMCID: PMC6004303 DOI: 10.7717/peerj.4947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Elephants are the largest and heaviest living terrestrial animals, but information on their histology is still lacking. This study provides a unique insight into the elephant's organs and also provides a comparison between juvenile Asian elephants and adult Asian elephants or other species. Here we report on the histological structure of 24 organs, including the skin, brain (cerebrum, cerebellar hemisphere, vermis, thalamus, midbrain), spinal cord, sciatic nerve, striated skeletal muscle, cardiac muscle, bone (flat bone and long bone), cartilage (hyaline cartilage and fibrocartilage), heart (right atrium, right ventricle), blood vessels (aorta, pulmonary artery and caudal vena cava), trunk, trachea, lung, tongue, esophagus, stomach, small intestine (duodenum, jejunum, ileum), large intestine (cecum, colon, rectum), liver and pancreas, kidney, ovary, uterus (body and horn) and spleen of two juvenile Asian elephants. Methods Tissue sections were stained with Harris's hematoxylin and eosin Y. Results While almost all structures were similar to those of other species or adult elephants, some structures were different from other mammalian species, such as: plexiform bone was found in flat bone only; a thin trachealismuscle was observed in the trachea; and no serous or mucinous glands were found in the submucosa of the trachea. Discussion Histological information from various organs can serve as an important foundation of basal data for future microanatomical studies, and help in the diagnosis and pathogenesis in sick elephants or those with an unknown cause of death.
Collapse
Affiliation(s)
- Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pitchaya Matchimakul
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanpitak Pongkan
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasan Tangphokhanon
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Raktham Maktrirat
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jaruwan Khonmee
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Sathanawongs
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyamat Kongtueng
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Center of Excellence in Veterinary Biosciences, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Casha AR, Caruana-Gauci R, Manche A, Gauci M, Chetcuti S, Bertolaccini L, Scarci M. Pleural pressure theory revisited: a role for capillary equilibrium. J Thorac Dis 2017; 9:979-989. [PMID: 28523153 DOI: 10.21037/jtd.2017.03.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. METHODS A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. RESULTS The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. CONCLUSIONS This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.
Collapse
Affiliation(s)
- Aaron R Casha
- Department of Cardiothoracic Surgery, Mater Dei Hospital, Malta.,Faculty of Medicine, Medical School, University of Malta, Malta
| | | | | | - Marilyn Gauci
- Department of Anaesthesia, Mater Dei Hospital, Malta
| | - Stanley Chetcuti
- Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Luca Bertolaccini
- Thoracic Surgery Unit, Sacro Cuore Don Calabria Research Hospital, Verona, Italy
| | - Marco Scarci
- Department of Thoracic Surgery, University College London Hospital, London, UK
| |
Collapse
|
7
|
Antonioli F, Lo Presti V, Morticelli MG, Bonfiglio L, Mannino MA, Palombo MR, Sannino G, Ferranti L, Furlani S, Lambeck K, Canese S, Catalano R, Chiocci FL, Mangano G, Scicchitano G, Tonielli R. Timing of the emergence of the Europe–Sicily bridge (40–17 cal ka BP) and its implications for the spread of modern humans. ACTA ACUST UNITED AC 2014. [DOI: 10.1144/sp411.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe submerged sill in the Strait of Messina, which is located today at a minimum depth of 81 m below sea level (bsl), represents the only land connection between Sicily and mainland Italy (and thus Europe) during the last lowstand when the sea level locally stood at about 126 m bsl. Today, the sea crossing to Sicily, although it is less than 4 km at the narrowest point, faces hazardous sea conditions, made famous by the myth of Scylla and Charybdis. Through a multidisciplinary research project, we document the timing and mode of emergence of this land connection during the last 40 kyr. The integrated analysis takes into consideration morphobathymetric and lithological data, and relative sea-level change (both isostatic and tectonic), resulting in the hypothesis that a continental land bridge lasted for at least 500 years between 21.5 and 20 cal ka BP. The emergence may have occurred over an even longer time span if one allows for seafloor erosion by marine currents that have lowered the seabed since the Last Glacial Maximum (LGM). Modelling of palaeotidal velocities shows that sea crossings when sea level was lower than present would have faced even stronger and more hazardous sea currents than today, supporting the hypothesis that earliest human entry into Sicily most probably took place on foot during the period when the sill emerged as dry land. This hypothesis is compared with an analysis of Pleistocene vertebrate faunas in Sicily and mainland Italy, including a new radiocarbon date on bone collagen of an Equus hydruntinus specimen from Grotta di San Teodoro (23–21 cal ka BP), the dispersal abilities of the various animal species involved, particularly their swimming abilities, and the Palaeolithic archaeological record, all of which support the hypothesis of a relatively late land-based colonization of Sicily by Homo sapiens.
Collapse
Affiliation(s)
| | - Valeria Lo Presti
- Earth and Marine Science Deptartment, Palermo University, Palermo, Italy
| | | | - Laura Bonfiglio
- Fauna Museum, Department of Veterinary Science, Messina University, Messina, Italy
| | - Marcello A. Mannino
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Luigi Ferranti
- DiSTAR, Earth Science, Environmental and Resources Department, University of Naples, Naples, Italy
| | - Stefano Furlani
- Mathematics and Geoscience Deptartment, University of Trieste, Trieste, Italy
| | - Kurt Lambeck
- Australian National University, Canberra, ACT, Australia
- Ecole Normale Supérieure, Paris, France
| | - Simonepietro Canese
- ISPRA Italian National Institute for Environmental Protection and Research, Rome, Italy
| | - Raimondo Catalano
- Earth and Marine Science Deptartment, Palermo University, Palermo, Italy
| | | | - Gabriella Mangano
- Fauna Museum, Department of Veterinary Science, Messina University, Messina, Italy
| | - Giovanni Scicchitano
- Studio Geologi Associati T.S.T., Catania, Italy
- Earth and Marine Science Department, Catania University, Catania, Italy
| | | |
Collapse
|
8
|
Weissengruber GE, Fuss FK, Egger G, Stanek G, Hittmair KM, Forstenpointner G. The elephant knee joint: morphological and biomechanical considerations. J Anat 2006; 208:59-72. [PMID: 16420379 PMCID: PMC2100174 DOI: 10.1111/j.1469-7580.2006.00508.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Elephant limbs display unique morphological features which are related mainly to supporting the enormous body weight of the animal. In elephants, the knee joint plays important roles in weight bearing and locomotion, but anatomical data are sparse and lacking in functional analyses. In addition, the knee joint is affected frequently by arthrosis. Here we examined structures of the knee joint by means of standard anatomical techniques in eight African (Loxodonta africana) and three Asian elephants (Elephas maximus). Furthermore, we performed radiography in five African and two Asian elephants and magnetic resonance imaging (MRI) in one African elephant. Macerated bones of 11 individuals (four African, seven Asian elephants) were measured with a pair of callipers to give standardized measurements of the articular parts. In one Asian and three African elephants, kinematic and functional analyses were carried out using a digitizer and according to the helical axis concept. Some peculiarities of healthy and arthrotic knee joints of elephants were compared with human knees. In contrast to those of other quadruped mammals, the knee joint of elephants displays an extended resting position. The femorotibial joint of elephants shows a high grade of congruency and the menisci are extremely narrow and thin. The four-bar mechanism of the cruciate ligaments exists also in the elephant. The main motion of the knee joint is extension-flexion with a range of motion of 142 degrees . In elephants, arthrotic alterations of the knee joint can lead to injury or loss of the cranial (anterior) cruciate ligament.
Collapse
Affiliation(s)
- G E Weissengruber
- Anatomy, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|