1
|
Zeni V, Romano D, Kavallieratos NG, Stefanini C, Lucchi A, Canale A, Benelli G. Tapping for love: courtship, mating, and behavioral asymmetry in two aphid parasitoids, Aphidius ervi and Aphidius matricariae (Hymenoptera: Braconidae: Aphidiinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1837-1845. [PMID: 38956824 DOI: 10.1093/jee/toae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Understanding the biology and ecology of parasitoids can have direct implications for their evaluation as biological control agents, as well as for the development and implementation of mass-rearing techniques. Nonetheless, our current knowledge of the possible influence of lateralized displays (i.e., the asymmetric expression of cognitive functions) on their reproductive behavior is scarce. Herein, we characterized the behavioral elements involved in courtship, and quantified the durations of 2 important aphid parasitoids, Aphidius ervi Haliday and Aphidius matricariae Haliday (Hymenoptera: Braconidae: Aphidiinae). We quantified the main indicators of copulation and examined the occurrence of lateralized traits at population level. Results indicated that A. matricariae exhibited longer durations of wing fanning, antennal tapping, pre-copula and copula phases compared to A. ervi. Postcopulatory behavior was observed only in A. matricariae. Unlike other parasitoid species, the duration of wing fanning, chasing, and antennal tapping did not affect the success of the mating of male A. ervi and A. matricariae. Both species exhibited a right-biased female kicking behavior at the population level during the pre-copula. Our study provides insights into the fundamental biology of aphidiine parasitoids and reports the presence of population-level lateralized mating displays, which can serve as useful benchmarks to evaluate the quality of mass-rearing systems.
Collapse
Affiliation(s)
- Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Donato Romano
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pontedera, Italy
- Department of Excellence in Robotics & A.I., Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, Athens, Attica, Greece
| | - Cesare Stefanini
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pontedera, Italy
- Department of Excellence in Robotics & A.I., Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Hao J, Liu C, Zhang N, Li J, Ni T, Qu M, Li XD. Alternative relay regulates the adenosine triphosphatase activity of Locusta migratoria striated muscle myosin. INSECT SCIENCE 2024; 31:435-447. [PMID: 37489033 DOI: 10.1111/1744-7917.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/26/2023]
Abstract
Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.
Collapse
Affiliation(s)
- Jie Hao
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Zhang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong Ni
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingbo Qu
- School of Bioengeering, Dalian University of Technology, Dalian, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Ren YS, Zhang B, Zeng Y, Zhu DH. Effects of Flight on Reproductive Development in Long-Winged Female Crickets ( Velarifictorus aspersus Walker; Orthoptera: Gryllidae) with Differences in Flight Behavior. INSECTS 2023; 14:79. [PMID: 36662007 PMCID: PMC9861251 DOI: 10.3390/insects14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A trade-off between the capacity for flight and reproduction has been documented extensively in wing polymorphic female insects, thereby supporting the possible fitness gain due to flightlessness. However, most of these studies were conducted without considering the effect of flight behavior. In the present study, we assessed the flight duration by long-winged (LW) females in the cricket species Velarifictorus aspersus on different days after adult emergence and examined the effect of flight on ovarian development in LW females with different flight capacities. Our results showed that the flight capacity increased with age and peaked after 5 days. In addition, the flight capacity varied among individuals, where most LW females could only take short flights (sustained flight time < 10 min) and only a few individuals could take long flights (sustained flight time > 20 min). In LW female crickets demonstrating only short flights, repeated flying for 30 or 60 min significantly promoted reproductive development. However, in those capable of long flights, reproductive development was affected only after a flight of 60 min. The flight muscles degraded after the start of rapid reproduction in those with both short and long flights. Our results indicated that the critical flight time for switching from flight to reproduction varies among LW V. aspersus female crickets with polymorphic flight behavior.
Collapse
|
5
|
Molecular and Pharmacological Characterization of β-Adrenergic-like Octopamine Receptors in the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Int J Mol Sci 2022; 23:ijms232314513. [PMID: 36498840 PMCID: PMC9740559 DOI: 10.3390/ijms232314513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Octopamine (OA) is structurally and functionally similar to adrenaline/noradrenaline in vertebrates, and OA modulates diverse physiological and behavioral processes in invertebrates. OA exerts its actions by binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been investigated in several insects. However, the literature on OARs is scarce for parasitoids. Here we cloned three β-adrenergic-like OARs (CcOctβRs) from Cotesia chilonis. CcOctβRs share high similarity with their own orthologous receptors. The transcript levels of CcOctβRs were varied in different tissues. When heterologously expressed in CHO-K1 cells, CcOctβRs induced cAMP production, and were dose-dependently activated by OA, TA and putative octopaminergic agonists. Their activities were inhibited by potential antagonists and were most efficiently blocked by epinastine. Our study offers important information about the molecular and pharmacological properties of β-adrenergic-like OARs from C. chilonis that will provide the basis to reveal the contribution of individual receptors to the physiological processes and behaviors in parasitoids.
Collapse
|
6
|
Ding D, Zhang J, Du B, Wang X, Hou L, Guo S, Chen B, Kang L. Non-canonical function of an Hif-1α splice variant contributes to the sustained flight of locusts. eLife 2022; 11:74554. [PMID: 36039636 PMCID: PMC9427102 DOI: 10.7554/elife.74554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/11/2022] [Indexed: 12/30/2022] Open
Abstract
The hypoxia inducible factor (Hif) pathway is functionally conserved across metazoans in modulating cellular adaptations to hypoxia. However, the functions of this pathway under aerobic physiological conditions are rarely investigated. Here, we show that Hif-1α2, a locust Hif-1α isoform, does not induce canonical hypoxic responses but functions as a specific regulator of locust flight, which is a completely aerobic physiological process. Two Hif-1α splice variants were identified in locusts, a ubiquitously expressed Hif-1α1 and a muscle-predominantly expressed Hif-1α2. Hif-1α1 that induces typical hypoxic responses upon hypoxia exposure remains inactive during flight. By contrast, the expression of Hif-1α2, which lacks C-terminal transactivation domain, is less sensitive to oxygen tension but induced extensively by flying. Hif-1α2 regulates physiological processes involved in glucose metabolism and antioxidation during flight and sustains flight endurance by maintaining redox homeostasis through upregulating the production of a reactive oxygen species (ROS) quencher, DJ-1. Overall, this study reveals a novel Hif-mediated mechanism underlying prolonged aerobic physiological activity.
Collapse
Affiliation(s)
- Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baozhen Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xuanzhao Wang
- School of Life Science, Hebei University, Baoding, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- School of Life Science, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,School of Life Science, Hebei University, Baoding, China
| |
Collapse
|
7
|
Hou L, Guo S, Ding D, Du B, Wang X. Neuroendocrinal and molecular basis of flight performance in locusts. Cell Mol Life Sci 2022; 79:325. [PMID: 35644827 PMCID: PMC11071871 DOI: 10.1007/s00018-022-04344-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Insect flight is a complex physiological process that involves sensory and neuroendocrinal control, efficient energy metabolism, rhythmic muscle contraction, and coordinated wing movement. As a classical study model for insect flight, locusts have attracted much attention from physiologists, behaviorists, and neuroendocrinologists over the past decades. In earlier research, scientists made extensive efforts to explore the hormone regulation of metabolism related to locust flight; however, this work was hindered by the absence of molecular and genetic tools. Recently, the rapid development of molecular and genetic tools as well as multi-omics has greatly advanced our understanding of the metabolic, molecular, and neuroendocrinal basis of long-term flight in locusts. Novel neural and molecular factors modulating locust flight and their regulatory mechanisms have been explored. Moreover, the molecular mechanisms underlying phase-dependent differences in locust flight have also been revealed. Here, we provide a systematic review of locust flight physiology, with emphasis on recent advances in the neuroendocrinal, genetic, and molecular basis. Future research directions and potential challenges are also addressed.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baozhen Du
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits. Proc Natl Acad Sci U S A 2022; 119:2115753118. [PMID: 34969848 PMCID: PMC8740713 DOI: 10.1073/pnas.2115753118] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
Migratory locusts display striking phenotypical plasticity. Gregarious locusts at high density can migrate long distances and cause huge economic losses of crops. By contrast, solitary locusts at low density have limited ability in long-distance flight. However, the mechanisms underlying such flight capacity variation are poorly understood. Here, we found that the flight muscle of solitary locusts has a higher catabolic capacity that is associated with greater reactive oxygen species (ROS) generation during high-velocity flights. By contrast, a relatively lower catabolic capacity in gregarious locusts is associated with lower ROS generation during long-distance flights. This finding uncovers the metabolic mechanism of locust flight trait alteration in response to density changes and enhances our understanding of the biological processes enabling locust migration. Flight ability is essential for the enormous diversity and evolutionary success of insects. The migratory locusts exhibit flight capacity plasticity in gregarious and solitary individuals closely linked with different density experiences. However, the differential mechanisms underlying flight traits of locusts are largely unexplored. Here, we investigated the variation of flight capacity by using behavioral, physiological, and multiomics approaches. Behavioral assays showed that solitary locusts possess high initial flight speeds and short-term flight, whereas gregarious locusts can fly for a longer distance at a relatively lower speed. Metabolome–transcriptome analysis revealed that solitary locusts have more active flight muscle energy metabolism than gregarious locusts, whereas gregarious locusts show less evidence of reactive oxygen species production during flight. The repression of metabolic activity by RNA interference markedly reduced the initial flight speed of solitary locusts. Elevating the oxidative stress by paraquat injection remarkably inhibited the long-distance flight of gregarious locusts. In respective crowding and isolation treatments, energy metabolic profiles and flight traits of solitary and gregarious locusts were reversed, indicating that the differentiation of flight capacity depended on density and can be reshaped rapidly. The density-dependent flight traits of locusts were attributed to the plasticity of energy metabolism and degree of oxidative stress production but not energy storage. The findings provided insights into the mechanism underlying the trade-off between velocity and sustainability in animal locomotion and movement.
Collapse
|
9
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
10
|
Sensitivity to expression levels underlies differential dominance of a putative null allele of the Drosophila tβh gene in behavioral phenotypes. PLoS Biol 2021; 19:e3001228. [PMID: 33970909 PMCID: PMC8136860 DOI: 10.1371/journal.pbio.3001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
The biogenic amine octopamine (OA) and its precursor tyramine (TA) are involved in controlling a plethora of different physiological and behavioral processes. The tyramine-β-hydroxylase (tβh) gene encodes the enzyme catalyzing the last synthesis step from TA to OA. Here, we report differential dominance (from recessive to overdominant) of the putative null tβhnM18 allele in 2 behavioral measures in Buridan’s paradigm (walking speed and stripe deviation) and in proboscis extension (sugar sensitivity) in the fruit fly Drosophila melanogaster. The behavioral analysis of transgenic tβh expression experiments in mutant and wild-type flies as well as of OA and TA receptor mutants revealed a complex interaction of both aminergic systems. Our analysis suggests that the different neuronal networks responsible for the 3 phenotypes show differential sensitivity to tβh gene expression levels. The evidence suggests that this sensitivity is brought about by a TA/OA opponent system modulating the involved neuronal circuits. This conclusion has important implications for standard transgenic techniques commonly used in functional genetics. Differential dominance occurs when genes associated with several phenotypes (pleiotropic genes) show different modes of inheritance (e.g., recessive, dominant or overdominant) depending on the phenotype. This study reveals that differential sensitivity to gene expression levels can mediate differential dominance, which can be a significant challenge for standard transgenic techniques commonly used to elucidate gene function.
Collapse
|
11
|
Manzi C, Vergara-Amado J, Franco LM, Silva AX. The effect of temperature on candidate gene expression in the brain of honey bee Apis mellifera (Hymenoptera: Apidae) workers exposed to neonicotinoid imidacloprid. J Therm Biol 2020; 93:102696. [DOI: 10.1016/j.jtherbio.2020.102696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
|
12
|
Liang HF, Li J, Li XD. Identification and characterization of troponin genes in Locusta migratoria. INSECT MOLECULAR BIOLOGY 2020; 29:391-403. [PMID: 32338426 DOI: 10.1111/imb.12644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Troponin complex comprises three subunits, namely troponin C (TpnC), troponin I (TpnI) and troponin T (TpnT), and regulates the contraction of striated muscle. We found that the locust Locusta migratoria genome has one TpnT gene (LmTpnT), one TpnI gene (LmTpnI) and three TpnC genes (LmTpnC1, LmTpnC2 and LmTpnC3). Through alternative splicing, LmTpnT and LmTpnI potentially encode two and eight isoforms, respectively. The flight muscle and the jump muscle of L. migratoria express an identical LmTpnT isoform, but different LmTpnC isoforms and LmTpnI isoforms. LmTpnC2 and LmTpnC3 both contain highly conserved residues essential for calcium binding in the EF-hand II and IV, thus belonging two-site isoform. LmTpnC1 contains non-conserved substitutions in the EF-hand II and all highly conserved residues for calcium binding in the EF-hand IV. Mutagenesis and tyrosine fluorescence spectroscopic analysis show that both the EF-hand II and IV of LmTpnC1 can serve as calcium-binding site. Therefore, all three LmTpnC isoforms belong to two-site isoform. This is in contrast to the situation in the insect with asynchronous flight muscle, which expresses both one-site isoform and two-site isoform of TpnC. Those results suggest that the origination of insect asynchronous flight muscle is associated with the emergence of one-site isoform of TpnC.
Collapse
Affiliation(s)
- H-F Liang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - J Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-D Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Cobb T, Sujkowski A, Morton C, Ramesh D, Wessells R. Variation in mobility and exercise adaptations between Drosophila species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:611-621. [PMID: 32335730 PMCID: PMC7314734 DOI: 10.1007/s00359-020-01421-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
Locomotion and mobility have been studied extensively in Drosophila melanogaster but less is known about the locomotor capacity of other Drosophila species, while the response to chronic exercise in other species has yet to be examined. We have shown that adult male D. melanogaster adapt to exercise training with improved running endurance, climbing speed, and flight ability compared to unexercised flies. Here, we examine baseline mobility of D. sechellia, D. simulans, and D. virilis, and their response to chronic exercise training. We found significant interspecific differences in mobility and in the response to exercise. Although there is a significant sex difference in exercise adaptations in D. melanogaster, intraspecific analysis reveals few sex differences in other Drosophila species. As octopamine has been shown to be important for exercise adaptations in D. melanogaster, we also asked if any observed differences could be attributed to baseline octopamine levels. We find that octopamine and tyramine levels have the same rank order as baseline climbing speed and endurance in males, but do not predict the response to chronic exercise in males or females. Future research should focus on determining the mechanisms responsible for the inter- and intraspecific differences in mobility and the response to exercise.
Collapse
Affiliation(s)
- Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Courtney Morton
- Department of Kinesiology, Wayne State University, Detroit, MI, 48201, USA
| | - Divya Ramesh
- Department of Biology, University of Konstanz, 78464, Konstanz, Baden Württemberg, Germany
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Xu G, Chang XF, Gu GX, Jia WX, Guo L, Huang J, Ye GY. Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103337. [PMID: 32109588 DOI: 10.1016/j.ibmb.2020.103337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
As the counterparts of noradrenaline and adrenaline in vertebrates, octopamine (OA) regulates multiple physiological and behavioral processes in invertebrate. OA mediates its effects via binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been reported in several insects. However, little work was documented in hemipteran insects. We cloned a β-adrenergic-like OAR (NcOA2B2) from Nephotettix cincticeps. NcOA2B2 shares high similarity with members of the OA2B2 receptor class. Transcript level of NcOA2B2 varied in various tissues and was highly expressed in the leg. After heterologous expression in CHO-K1 cells, NcOA2B2 was dose-dependently activated by OA (EC50 = 2.56 nM) and tyramine (TA) (EC50 = 149 nM). Besides putative octopaminergic agonists, dopaminergic agonists and amitraz and DPMF potently activated NcOA2B2 in a dose-dependent manner. Receptor activity was blocked by potential antagonists and was most efficiently antagonized by asenapine. Phentolamine showed both antagonist and agonist effects on NcOA2B2. Our results offer the important information about molecular and pharmacological characterization of an OAR from N. cincticeps that will provide the basis for forthcoming studies on its roles in physiological processes and behaviors, and facilitate the design of novel insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Xue-Fei Chang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wen-Xi Jia
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Lubawy J, Urbański A, Colinet H, Pflüger HJ, Marciniak P. Role of the Insect Neuroendocrine System in the Response to Cold Stress. Front Physiol 2020; 11:376. [PMID: 32390871 PMCID: PMC7190868 DOI: 10.3389/fphys.2020.00376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
- HiProMine S.A., Robakowo, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | | | - Paweł Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| |
Collapse
|
16
|
Mantziaris C, Bockemühl T, Büschges A. Central pattern generating networks in insect locomotion. Dev Neurobiol 2020; 80:16-30. [PMID: 32128970 DOI: 10.1002/dneu.22738] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022]
Abstract
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior-specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state-of-the-art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.
Collapse
Affiliation(s)
- Charalampos Mantziaris
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Rittschof CC, Vekaria HJ, Palmer JH, Sullivan PG. Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee Apis mellifera. J Neurosci Res 2019; 97:991-1003. [PMID: 31090236 DOI: 10.1002/jnr.24443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/18/2023]
Abstract
Mitochondrial activity is highly dynamic in the healthy brain, and it can reflect both the signaling potential and the signaling history of neural circuits. Recent studies spanning invertebrates to mammals have highlighted a role for neural mitochondrial dynamics in learning and memory processes as well as behavior. In the current study, we investigate the interplay between biogenic amine signaling and neural energetics in the honey bee, Apis mellifera. In this species, aggressive behaviors are regulated by neural energetic state and biogenic amine titers, but it is unclear how these mechanisms are linked to impact behavioral expression. We show that brain mitochondrial number is highest in aggression-relevant brain regions and in individual bees that are most responsive to aggressive cues, emphasizing the importance of energetics in modulating this phenotype. We also show that the neural energetic response to alarm pheromone, an aggression inducing social cue, is activity dependent, modulated by the "fight or flight" insect neurotransmitter octopamine. Two other neuroactive compounds known to cause variation in aggression, dopamine, and serotonin, also modulate neural energetic state in aggression-relevant regions of the brain. However, the effects of these compounds on respiration at baseline and following alarm pheromone exposure are distinct, suggesting unique mechanisms underlying variation in mitochondrial respiration in these circuits. These results motivate new explanations for the ways in which biogenic amines alter sensory perception in the context of aggression. Considering neural energetics improves predictions about the regulation of complex and context-dependent behavioral phenotypes.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | - Hemendra J Vekaria
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Joseph H Palmer
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Kong H, Dong C, Jing W, Tian Z, Zheng M, Wang C, Hou Q, Cheng Y, Zhang L, Jiang X, Luo L, Zhu S. The Role of Tyramine β-Hydroxylase in Density Dependent Immunityof Oriental Armyworm ( Mythmina separata) Larva. Int J Mol Sci 2019; 20:ijms20071553. [PMID: 30925699 PMCID: PMC6480284 DOI: 10.3390/ijms20071553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
High population density alters insect prophylactic immunity, with density-dependent prophylaxis (DDP) being reported in many polyphonic insects. However, the molecular mechanism for DDP remains unclear. In current study, the role of tyramine β-hydroxylase (Tβh) in the immune response of M. separata larvae that were subject to different rearing densities conditions was investigated. The tyramine β-hydroxylase activity of larvae from high density treatments (10 and 30 larvae per jar) was significantly higher than that of the larvae from low density treatments (one, two, and five larvae/jar). A tyramine β-hydroxylase (designated MsTβh) containing a 1779 bp open reading frame was identified. Multiple sequence alignment and phylogenetic analysis indicated that MsTβh was orthologous to the Tβh that was found in other lepidopterans. Elevated MsTβh expression was observed in larvae under high density (10 larvae per jar). Silencing MsTβh expression by the injection of dsRNA in larvae from the high density treatment produced a 25.1% reduction in octopamine levels, while at the same time, there was a significant decrease in phenoloxidase (PO) and lysozyme activity, total haemocyte counts, and survival against Beauveria infection 56.6%, 88.5%, 82.0%, and 55.8%, respectively, when compared to control larvae. Our findings provide the first insights into how MsTβh mediates the octopamine level, which in turn modulates the immune response of larvae under different population densities.
Collapse
Affiliation(s)
- Hailong Kong
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Chuanlei Dong
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Wanghui Jing
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Minyuan Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Cheng Wang
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Qiuli Hou
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Beijing 100193, China.
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Beijing 100193, China.
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Beijing 100193, China.
| | - Lizhi Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Beijing 100193, China.
| | - Shude Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, China.
| |
Collapse
|
19
|
Kononenko NL, Hartfil S, Willer J, Ferch J, Wolfenberg H, Pflüger HJ. A population of descending tyraminergic/octopaminergic projection neurons of the insect deutocerebrum. J Comp Neurol 2018; 527:1027-1038. [PMID: 30444529 DOI: 10.1002/cne.24583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Abstract
In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.
Collapse
Affiliation(s)
| | - Sergej Hartfil
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - Julia Willer
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - Jessica Ferch
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - Heike Wolfenberg
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | | |
Collapse
|
20
|
Reynoso MMN, Lucia A, Zerba EN, Alzogaray RA. Eugenol-hyperactivated nymphs of Triatoma infestans become intoxicated faster than non-hyperactivated nymphs when exposed to a permethrin-treated surface. Parasit Vectors 2018; 11:573. [PMID: 30390682 PMCID: PMC6215654 DOI: 10.1186/s13071-018-3146-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eugenol is a botanical monoterpene that hyperactivates the blood-sucking bug Triatoma infestans, and permethrin is a pyrethroid with a strong triatomicide effect. In the present work, we tested the hypothesis that eugenol-hyperactivated nymphs of T. infestans pick up more insecticide, and then become intoxicated faster, than non-hyperactivated nymphs when exposed to a permethrin-treated surface. RESULTS Values of knockdown time 50% (KT50) for third-instar T. infestans exposed to a paper impregnated with permethrin were obtained under the following situations: (a.i.) immediately after topical application of eugenol (KT50: 66.75 min for acetone pre-treated controls, and 46.27 min for eugenol pre-treated nymphs); (a.ii.) 30 min after topical application of eugenol (KT50: 66.79 min for controls, and 66.79 min for eugenol pre-treated nymphs); (b) simultaneously with exposure to eugenol vapors (KT50: 51.90 min for controls, and 39.5 min for nymphs exposed to an eugenol-treated filter paper); and (c) immediately after an injection of eugenol (on average, controls were knocked down after 63.00 min, whereas nymphs injected with eugenol were knocked down after 65.30 min). In other experimental series, the distance traveled (DT) by nymphs exposed to eugenol was quantified in the same situations previously described, but without exposure to permethrin. In (a.i.), the DT in interval 0-30 min after topical application of eugenol was 487.00 (control) and 1127.50 (eugenol) cm; in (a.ii.), the DT in the interval 31-60 min after topical application was 336.75 (control) and 256.75 (eugenol) cm; in (b), DT was 939.08 (control) and 1048.53 (eugenol) cm; and in (c), it was 589.20 (control) and 700.00 (eugenol) cm. The KT50 values for permethrin decreased significantly in situations (a.i.) and (b), and eugenol only produced a significant hyperactivity in the same situations. Finally, the amount of permethrin picked up by non-hyperactivated and hyperactivated nymphs exposed to a film of permethrin was quantified by gas chromatography. Non-hyperactivated nymphs picked up 0.34 μg/insect of permethrin, while hyperactivated nymphs picked up 0.65 μg/insect. CONCLUSION Results support the hypothesis that eugenol-hyperactivated nymphs of T. infestans pick up more insecticide, and then become intoxicated faster, than non-hyperactivated nymphs when exposed to a permethrin-treated surface.
Collapse
Affiliation(s)
| | - Alejandro Lucia
- UNIDEF-CITEDEF-CONICET- CIPEIN, Juan B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina
| | - Eduardo Nicolás Zerba
- UNIDEF-CITEDEF-CONICET- CIPEIN, Juan B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina
| | - Raúl Adolfo Alzogaray
- UNIDEF-CITEDEF-CONICET- CIPEIN, Juan B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Pauls D, Blechschmidt C, Frantzmann F, El Jundi B, Selcho M. A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster. Sci Rep 2018; 8:15314. [PMID: 30333565 PMCID: PMC6192984 DOI: 10.1038/s41598-018-33686-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023] Open
Abstract
The modulation of an animal’s behavior through external sensory stimuli, previous experience and its internal state is crucial to survive in a constantly changing environment. In most insects, octopamine (OA) and its precursor tyramine (TA) modulate a variety of physiological processes and behaviors by shifting the organism from a relaxed or dormant condition to a responsive, excited and alerted state. Even though OA/TA neurons of the central brain are described on single cell level in Drosophila melanogaster, the periphery was largely omitted from anatomical studies. Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which highly depend on a variety of peripheral organs, it is necessary to study the peripheral connections of these neurons to get a complete picture of the OA/TA circuitry. We here describe the anatomy of this aminergic system in relation to peripheral tissues of the entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate reproductive organs, the heart, the corpora allata, and sensory organs in the antennae, legs, wings and halteres underlining their relevance in modulating complex behaviors.
Collapse
Affiliation(s)
- Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Christine Blechschmidt
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Felix Frantzmann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Basil El Jundi
- Zoology II, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
22
|
Sujkowski A, Ramesh D, Brockmann A, Wessells R. Octopamine Drives Endurance Exercise Adaptations in Drosophila. Cell Rep 2018; 21:1809-1823. [PMID: 29141215 DOI: 10.1016/j.celrep.2017.10.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 02/04/2023] Open
Abstract
Endurance exercise is an effective therapeutic intervention with substantial pro-healthspan effects. Male Drosophila respond to a ramped daily program of exercise by inducing conserved physiological responses similar to those seen in mice and humans. Female flies respond to an exercise stimulus but do not experience the adaptive training response seen in males. Here, we use female flies as a model to demonstrate that differences in exercise response are mediated by differences in neuronal activity. The activity of octopaminergic neurons is specifically required to induce the conserved cellular and physiological changes seen following endurance training. Furthermore, either intermittent, scheduled activation of octopaminergic neurons or octopamine feeding is able to fully substitute for exercise, conferring a suite of pro-healthspan benefits to sedentary Drosophila. These experiments indicate that octopamine is a critical mediator of adaptation to endurance exercise in Drosophila.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI 48201, USA
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Robert Wessells
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI 48201, USA.
| |
Collapse
|
23
|
Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg H, Colomb J, Weber C, Ramesh N, Duch C, Biserova NM, Sigrist S, Pflüger HJ. Structural and Molecular Properties of Insect Type II Motor Axon Terminals. Front Syst Neurosci 2018; 12:5. [PMID: 29615874 PMCID: PMC5867341 DOI: 10.3389/fnsys.2018.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria) or fruit flies (Drosophila melanogaster) across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches (“synaptopods”) but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in “synaptopods”, the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).
Collapse
Affiliation(s)
- Bettina Stocker
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Christina Bochow
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Christine Damrau
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Mathejczyk
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Heike Wolfenberg
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Claudia Weber
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Niraja Ramesh
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Carsten Duch
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Natalia M Biserova
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Stephan Sigrist
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
24
|
Xu L, Jiang HB, Chen XF, Xiong Y, Lu XP, Pei YX, Smagghe G, Wang JJ. How Tyramine β-Hydroxylase Controls the Production of Octopamine, Modulating the Mobility of Beetles. Int J Mol Sci 2018; 19:E846. [PMID: 29538302 PMCID: PMC5877707 DOI: 10.3390/ijms19030846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines perform many kinds of important physiological functions in the central nervous system (CNS) of insects, acting as neuromodulators, neurotransmitters, and neurohormones. The five most abundant types of biogenic amines in invertebrates are dopamine, histamine, serotonin, tyramine, and octopamine (OA). However, in beetles, an important group of model and pest insects, the role of tyramine β-hydroxylase (TβH) in the OA biosynthesis pathway and the regulation of behavior remains unknown so far. We therefore investigated the molecular characterization and spatiotemporal expression profiles of TβH in red flour beetles (Triboliun castaneum). Most importantly, we detected the production of OA and measured the crawling speed of beetles after dsTcTβH injection. We concluded that TcTβH controls the biosynthesis amount of OA in the CNS, and this in turn modulates the mobility of the beetles. Our new results provided basic information about the key genes in the OA biosynthesis pathway of the beetles, and expanded our knowledge on the physiological functions of OA in insects.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Ying Xiong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Momohara Y, Aonuma H, Nagayama T. Tyraminergic modulation of agonistic outcomes in crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:465-473. [PMID: 29488014 DOI: 10.1007/s00359-018-1255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/03/2018] [Accepted: 02/23/2018] [Indexed: 01/05/2023]
Abstract
Octopamine, a biogenic amine, modulates various behaviors, ranging from locomotion and aggression to learning and memory in invertebrates. Several studies recently demonstrated that tyramine, the biological precursor of octopamine, also affects behaviors independent of octopamine. Here we investigated the involvement of tyramine in agonistic interaction of the male crayfish Procambarus clarkii. When male crayfish fight, larger animals (3-7% difference in body length) are more likely to win. By contrast, direct injection of tyramine or octopamine counteracted the physical advantage of larger animals. Tyramine or octopamine-injected naive large animals were mostly beaten by untreated smaller naive animals. This pharmacological effect was similar to the loser effect in which subordinate larger animals are frequently beaten by smaller animals. Furthermore, loser effects were partly eliminated by either injection of epinastine, an octopamine blocker, or yohimbine, a tyramine blocker, and significantly diminished by injection of a mixture of both blockers. We also observed that tyramine levels in the subesophageal ganglion were remarkably increased in subordinate crayfish after losing a fight. These results suggest that tyramine modulates aggressive levels of crayfish and contributes to the loser effect in parallel with octopamine.
Collapse
Affiliation(s)
- Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, Yamagata, 990-8560, Japan. .,Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan.
| | - Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0811, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| |
Collapse
|
26
|
Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Drosophila Larval Locomotion. J Neurosci 2017; 37:10971-10982. [PMID: 28986465 DOI: 10.1523/jneurosci.1064-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022] Open
Abstract
Behaviorally adequate neuronal firing patterns are critically dependent on the specific types of ion channel expressed and on their subcellular localization. This study combines in situ electrophysiology with genetic and pharmacological intervention in larval Drosophila melanogaster of both sexes to address localization and function of L-type like calcium channels in motoneurons. We demonstrate that Dmca1D (Cav1 homolog) L-type like calcium channels localize to both the somatodendritic and the axonal compartment of larval crawling motoneurons. In situ patch-clamp recordings in genetic mosaics reveal that Dmca1D channels increase burst duration and maximum intraburst firing frequencies during crawling-like motor patterns in semi-intact animals. Genetic and acute pharmacological manipulations suggest that prolonged burst durations are caused by dendritically localized Dmca1D channels, which activate upon cholinergic synaptic input and amplify EPSPs, thus indicating a conserved function of dendritic L-type channels from Drosophila to vertebrates. By contrast, maximum intraburst firing rates require axonal calcium influx through Dmca1D channels, likely to enhance sodium channel de-inactivation via a fast afterhyperpolarization through BK channel activation. Therefore, in unmyelinated Drosophila motoneurons different functions of axonal and dendritic L-type like calcium channels likely operate synergistically to maximize firing output during locomotion.SIGNIFICANCE STATEMENT Nervous system function depends on the specific excitabilities of different types of neurons. Excitability is largely shaped by different combinations of voltage-dependent ion channels. Despite a high degree of conservation, the huge diversity of ion channel types and their differential localization pose challenges in assigning distinct functions to specific channels across species. We find a conserved role, from fruit flies to mammals, for L-type calcium channels in augmenting motoneuron excitability. As in spinal cord, dendritic L-type channels amplify excitatory synaptic input. In contrast to spinal motoneurons, axonal L-type channels enhance firing rates in unmyelinated Drosophila motoraxons. Therefore, enhancing motoneuron excitability by L-type channels seems an old strategy, but localization and interactions with other channels are tuned to species-specific requirements.
Collapse
|
27
|
Ryglewski S, Duch C, Altenhein B. Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase. Front Syst Neurosci 2017; 11:68. [PMID: 29021745 PMCID: PMC5624129 DOI: 10.3389/fnsys.2017.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | |
Collapse
|
28
|
Kita T, Hayashi T, Ohtani T, Takao H, Takasu H, Liu G, Ohta H, Ozoe F, Ozoe Y. Amitraz and its metabolite differentially activate α- and β-adrenergic-like octopamine receptors. PEST MANAGEMENT SCIENCE 2017; 73:984-990. [PMID: 27484898 DOI: 10.1002/ps.4412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Amitraz is a formamidine acaricide and insecticide used to control ticks, mites and fleas. N2 -(2,4-Dimethylphenyl)-N1 -methyformamidine (DPMF), a metabolite of amitraz, is thought to be an active agent that exerts acaricidal and insecticidal effects by acting as an agonist on octopamine receptors. The emergence of cattle ticks resistant to amitraz is a serious problem that requires urgent attention. The objective of this research was to determine which type of octopamine receptor is the primary target of amitraz and thereby understand the molecular mechanisms of action and resistance to amitraz. RESULTS Amitraz and DPMF potently activated Bombyx mori α- and β-adrenergic-like octopamine receptors (α- and β-AL OARs) that were stably expressed in HEK-293 cells. Notably, DPMF elevated intracellular cAMP levels, with an EC50 of 79.6 pm in β-AL OARs, the transcripts of which were prevalently and widely localised in B. mori body parts. Furthermore, DPMF elevated the intracellular Ca2+ levels, with an EC50 of 1.17 nm in α-AL OARs. CONCLUSION Although both amitraz and DPMF acted as OAR agonists, the metabolite DPMF was more potent than amitraz and differentially activated α- and β-AL OARs. The present findings provide a basis for studies to examine the mechanism of amitraz resistance and to develop novel acaricides and insecticides. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Present address: Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Takeshi Hayashi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Tomohiro Ohtani
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Haruka Takao
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Hiroshi Takasu
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Genyan Liu
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Present address: School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Hiroto Ohta
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yoshihisa Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
29
|
Li J, Lu Z, He J, Chen Q, Wang X, Kang L, Li XD. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity. INSECT MOLECULAR BIOLOGY 2016; 25:689-700. [PMID: 27440416 DOI: 10.1111/imb.12254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Whereas the vertebrate muscle myosin heavy chains (MHCs) are encoded by a family of Mhc genes, most insects examined to date contain a single Mhc gene and produce all of the different MHC isoforms by alternative RNA splicing. Here, we found that the migratory locust, Locusta migratoria, has one Mhc gene, which contains 41 exons, including five alternative exclusive exons and one differently included penultimate exon, and potentially encodes 360 MHC isoforms. From the adult L. migratoria, we identified 14 MHC isoforms (including two identical isoforms): four from flight muscle (the thorax dorsal longitudinal muscle), three from jump muscle (the hind leg extensor tibiae muscle) and seven from the abdominal intersegmental muscle. We purified myosins from flight muscle and jump muscle and characterized their motor activities. At neutral pH, the flight and the jump muscle myosins displayed similar levels of in vitro actin-gliding activity, whereas the former had a slightly higher actin-activated ATPase activity than the latter. Interestingly, the pH dependences of the actin-activated ATPase activity of these two myosins are different. Because the dominant MHC isoforms in these two muscles are identical except for the two alternative exon-encoding regions, we propose that these two alternative regions modulate the pH dependence of L. migratoria muscle myosin.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Z Lu
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J He
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Q Chen
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X Wang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L Kang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-D Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Hoverfly locomotor activity is resilient to external influence and intrinsic factors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:45-54. [PMID: 26610330 PMCID: PMC4698302 DOI: 10.1007/s00359-015-1051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/13/2015] [Accepted: 10/29/2015] [Indexed: 12/03/2022]
Abstract
Hoverflies are found across the globe, with approximately 6000 species described worldwide. Many hoverflies are being used in agriculture and some are emerging as model species for laboratory experiments. As such it is valuable to know more about their activity. Like many other dipteran flies, Eristalis hoverflies have been suggested to be strongly diurnal, but this is based on qualitative visualization by human observers. To quantify how hoverfly activity depends on internal and external factors, we here utilize a locomotor activity monitoring system. We show that Eristalis hoverflies are active during the entire light period when exposed to a 12 h light:12 h dark cycle, with a lower activity if exposed to light during the night. We show that the hoverflies’ locomotor activity is stable over their lifetime and that it does not depend on the diet provided. Surprisingly, we find no difference in activity between males and females, but the activity is significantly affected by the sex of an accompanying conspecific. Finally, we show that female hoverflies are more resilient to starvation than males. In summary, Eristalis hoverflies are resilient to a range of internal and external factors, supporting their use in long-term laboratory experiments.
Collapse
|
31
|
Holden-Dye L, Fiorito G, Ponte G. Invertebrate neuroscience and CephsInAction at the Mediterranean Society for Neuroscience Meeting Cagliari 2015. INVERTEBRATE NEUROSCIENCE 2015; 15:6. [PMID: 26386979 DOI: 10.1007/s10158-015-0182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Invertebrate neuroscience, and in particular cephalopod research, is well represented in the Mediterranean region. Therefore, the recent meeting of the Mediterranean Society for Neuroscience in Santa Margherita di Pula, Sardinia (12-15 June 2015) provided an excellent opportunity for invertebrate contributions. Furthermore, the Chair of an EU COST Action for cephalopod research (FA1301; www.cephsinaction.org ), Giovanna Ponte, together with Graziano Fiorito from the Stazione Zoologica, Naples, aligned a meeting of research groups working in the field of cephalopod neurophysiology from across Europe to coincide with the neuroscience meeting. This provided an exciting forum for exchange of ideas. Here we provide brief highlights of both events and an explanation of the activities of the COST Action for the broader invertebrate neuroscience community.
Collapse
Affiliation(s)
- Lindy Holden-Dye
- Centre for Biological Sciences, Building 85, Highfield Campus, Southampton, SO17 1BJ, UK.
| | - Graziano Fiorito
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Giovanna Ponte
- Cephalopod Research (CephRes), Via dei Fiorentini, 80133, Naples, Italy
| |
Collapse
|
32
|
Egekwu N, Sonenshine DE, Bissinger BW, Roe RM. Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS One 2014; 9:e102667. [PMID: 25075967 PMCID: PMC4116169 DOI: 10.1371/journal.pone.0102667] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022] Open
Abstract
Illumina and 454 pyrosequencing were used to characterize genes from the synganglion of female Ixodes scapularis. GO term searching success for biological processes was similar for samples sequenced by both methods. However, for molecular processes, it was more successful for the Illumina samples than for 454 samples. Functional assignments of transcripts predicting neuropeptides, neuropeptide receptors, neurotransmitter receptors and other genes of interest was done, supported by strong e-values (<-6), and high consensus sequence alignments. Transcripts predicting 15 putative neuropeptide prepropeptides ((allatostatin, allatotropin, bursicon α, corticotropin releasing factor (CRF), CRF-binding protein, eclosion hormone, FMRFamide, glycoprotein A, insulin-like peptide, ion transport peptide, myoinhibitory peptide, inotocin ( = neurophysin-oxytocin), Neuropeptide F, sulfakinin and SIFamide)) and transcripts predicting receptors for 14 neuropeptides (allatostatin, calcitonin, cardioacceleratory peptide, corazonin, CRF, eclosion hormone, gonadotropin-releasing hormone/AKH-like, insulin-like peptide, neuropeptide F, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin) are reported. Similar to Dermacentor variabilis, we found transcripts matching pro-protein convertase, essential for converting neuropeptide hormones to their mature form. Additionally, transcripts predicting 6 neurotransmitter/neuromodulator receptors (acetylcholine, GABA, dopamine, glutamate, octopamine and serotonin) and 3 neurotransmitter transporters (GABA transporter, noradrenalin-norepinephrine transporter and Na+-neurotransmitter/symporter) are described. Further, we found transcripts predicting genes for pheromone odorant receptor, gustatory receptor, novel GPCR messages, ecdysone nuclear receptor, JH esterase binding protein, steroidogenic activating protein, chitin synthase, chitinase, and other genes of interest. Also found were transcripts predicting genes for spermatogenesis-associated protein, major sperm protein, spermidine oxidase and spermidine synthase, genes not normally expressed in the female CNS of other invertebrates. The diversity of messages predicting important genes identified in this study offers a valuable resource useful for understanding how the tick synganglion regulates important physiological functions.
Collapse
Affiliation(s)
- Noble Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | | | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
33
|
Crespo JG, Vickers NJ, Goller F. Female pheromones modulate flight muscle activation patterns during preflight warm-up. J Neurophysiol 2013; 110:862-71. [PMID: 23699056 DOI: 10.1152/jn.00871.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At low ambient temperature Helicoverpa zea male moths engage in warm-up behavior prior to taking flight in response to an attractive female pheromone blend. Male H. zea warm up at a faster rate when sensing the attractive pheromone blend compared with unattractive blends or blank controls (Crespo et al. 2012), but the mechanisms involved in this olfactory modulation of the heating rate during preflight warm-up are unknown. Here, we test three possible mechanisms for increasing heat production: 1) increased rate of muscle contraction; 2) reduction in mechanical movement by increased overlap in activation of the antagonistic flight muscles; and 3) increased activation of motor units. To test which mechanisms play a role, we simultaneously recorded electrical activation patterns of the main flight muscles (dorsolongitudinal and dorsoventral muscles), wing movement, and thoracic temperature in moths exposed to both the attractive pheromone blend and a blank control. Results indicate that the main mechanism responsible for the observed increase in thoracic heating rate with pheromone stimulation is the differential activation of motor units during each muscle contraction cycle in both antagonistic flight muscles. This additional activation lengthens the contracted state within each cycle and thus accounts for the greater heat production. Interestingly, the rate of activation (frequency of contraction cycles) of motor units, which is temperature dependent, did not vary between treatments. This result suggests that the activation rate is determined by a temperature-dependent oscillator, which is not affected by the olfactory stimulus, but activation of motor units is modulated during each cycle.
Collapse
Affiliation(s)
- José G Crespo
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
34
|
Adamo SA. The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection. Horm Behav 2012; 62:324-30. [PMID: 22381405 DOI: 10.1016/j.yhbeh.2012.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/04/2012] [Accepted: 02/12/2012] [Indexed: 11/21/2022]
Abstract
Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.
Collapse
Affiliation(s)
- Shelley A Adamo
- Dept. of Psychology and Neuroscience, Dalhousie Univ., Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
35
|
Holden-Dye L, Walker RJ. Report on the 12th symposium on invertebrate neurobiology held 31 August-4 September 2011 at the Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary. INVERTEBRATE NEUROSCIENCE 2012; 12:69-79. [PMID: 22481213 DOI: 10.1007/s10158-012-0131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
In August 2011, the 12th international symposium of ISIN was held by Lake Balaton in Tihany, Hungary. This convivial and stimulating meeting provided a forum for discussion of a range of invertebrate organisms in neuroscience research. Here the main topics covered at the meeting are reviewed.
Collapse
Affiliation(s)
- Lindy Holden-Dye
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | | |
Collapse
|