1
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
2
|
Dong SJ, Wang L, Chitano P, Coxson HO, Paré PD, Seow CY. Airway diameter at different transpulmonary pressures in ex vivo sheep lungs: Implications for deep-inspiration-induced bronchodilation and bronchoprotection. Am J Physiol Lung Cell Mol Physiol 2021; 321:L663-L674. [PMID: 34287071 DOI: 10.1152/ajplung.00208.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep inspiration (DI)-induced bronchodilation is the first line of defense against bronchoconstriction in healthy subjects. A hallmark of asthma is the lack of this beneficial effect of DI. The mechanism underlying the bronchodilatory effect of DI is not clear. Understanding the mechanism will help us unravel the mystery of asthma pathophysiology. It has been postulated that straining airway smooth muscle (ASM) during a DI could lead to bronchodilation and bronchoprotection. The hypothesis is currently under debate, and a central question is whether ASM is sufficiently stretched during a DI for its contractility to be compromised. Besides bronchoconstriction, another contributor to lung resistance is airway heterogeneity. The present study examines changes in airway diameter and heterogeneity at different lung volumes. Freshly explanted sheep lungs were used in plethysmographic measurements of lung resistance and elastance at different lung volumes while the airway dimensions were measured by computed tomography (CT). The change in airway diameter informed by CT measurements was applied to isolated airway ring preparations to determine the strain-induced loss of ASM contractility. We found that changing the transpulmonary pressure from 5 to 30 cmH2O led to a 51%-increase in lung volume, accompanied by a 46%-increase in the airway diameter with no change in airway heterogeneity. When comparable airway strains measured in the whole lung were applied to isolated airway rings in either relaxed or contracted state, a significant loss of ASM contractility was observed, suggesting that DI-induced bronchodilation and bronchoprotection can result from strain-induced loss of ASM contractility.
Collapse
Affiliation(s)
- Shou-Jin Dong
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Respiratory Department, Chengdu First People's Hospital, Chengdu, China
| | - Lu Wang
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Pasquale Chitano
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Harvey O Coxson
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Peter D Paré
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- The UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Airway remodelling with spatial correlations: Implications for asthma pathogenesis. Respir Physiol Neurobiol 2020; 279:103469. [PMID: 32473215 DOI: 10.1016/j.resp.2020.103469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Airway remodelling is a cardinal feature of asthma in which airways undergo structural changes - in particular, increased airway smooth muscle mass and total airway wall area. Remodelling has long been thought to have functional consequences in asthma due to geometric effects that can increase airway narrowing and luminal occlusion. Prior studies have examined the distribution of remodelling between and within patients, but none have yet considered the possibility for spatial correlations in airway remodelling. That is, is remodelling clustered locally, or interrelated along proximal and distal locations of the bronchial tree? In view of recent interest regarding airway remodelling produced by mechanical stimuli, we developed a mathematical model to examine whether spatial correlations in airway remodelling could arise due to cycles of bronchoconstriction and mechanotransduction. Further, we compared modelling predictions to the spatial distribution of airway remodelling in lungs from subjects with and without asthma. Results indicate that spatial correlations in airway remodelling do exist in vivo, and cycles of bronchoconstriction and mechanotransduction are one plausible mechanism for their origin. These findings offer insights into the evolution of airway remodelling in asthma, which may inform strategies for treatment and prevention.
Collapse
|
4
|
Jiang XH, Li CQ, Feng GY, Luo MJ, Sun QX. One-Week Nebulization of Mycobacterium vaccae Can Protect Against Pulmonary Respiratory Syncytial Virus Infection in Balb/c Mice. J Aerosol Med Pulm Drug Deliv 2020; 33:249-257. [PMID: 32301643 DOI: 10.1089/jamp.2019.1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Respiratory syncytial virus (RSV) infection is the most common cause of acute lower respiratory tract infection in children, leading to their death. Currently, no effective prevention and treatment methods for RSV infection are available. RSV and many other unknown viruses pose a serious threat to human health. Our previous study demonstrated that Mycobacterium vaccae nebulization can protect against allergic asthma. As RSV infection and asthma are closely related, we hypothesized that M. vaccae could protect against pulmonary RSV infection. Therefore, we evaluated the effect of M. vaccae on RSV infection in Balb/c mice. Methods: The mice were randomized into three groups: normal, RSV, and M. vaccae. One week before the RSV infection model was established, the mice in the M. vaccae group were nebulized with M. vaccae. On the fourth day after RSV infection, airway responsiveness, airway inflammation, pulmonary RSV infection, mRNA levels of pulmonary toll-like receptor (TLR) 7 and TLR8, and pulmonary NF09, acetylcholine, and epidermal growth factor regulator (EGFR) expression levels in all mice were measured. Results: The airway inflammation in the M. vaccae group was alleviated compared with that in the RSV group. In the M. vaccae group, the pulmonary mRNA level of RSV and the pulmonary expression levels of NF09, acetylcholine, and EGFR were decreased considerably, whereas the mRNA levels of TLR7 and TLR8 were increased significantly. Conclusions: One-week nebulization of M. vaccae can protect against RSV infection in Balb/c mice. The mechanism involves the regulation of neurotransmitters and expression of TLR7, TLR8, and EGFR.
Collapse
Affiliation(s)
- Xiao-Hong Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guang-Yi Feng
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Ming-Jie Luo
- Department of Respiratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Qi-Xiang Sun
- The Graduate School of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Roos KLT, Al-Jumaily AM. Effects of superimposed pressure oscillations on a chronic sensitized airways mouse model. Am J Physiol Lung Cell Mol Physiol 2020; 318:L900-L907. [PMID: 32101015 DOI: 10.1152/ajplung.00348.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hyperconstriction of airway smooth muscle (ASM) is the main driving mechanism during an asthmatic attack. The airway lumen is reduced, resistance to airflow increases, and normal breathing becomes more difficult. The tissue contraction can be temporarily relieved by using bronchodilator drugs, which induce relaxation of the constricted airways. In vitro studies indicate that relaxation of isolated, precontracted ASM is induced by mechanical oscillations in healthy subjects but not in asthmatic subjects. Further, short-term acute asthmatic subjects respond to superimposed pressure oscillations (SIPO) generated in the range of 5-15 Hz with ~50% relaxation of preconstricted sensitized airways. Mechanical oscillations, and specifically SIPO, are not widely characterized in asthmatic models. The objective of this in vivo study is to determine the effects of a range of oscillation patterns similar to our previous acute study differing from normal breathing. Both healthy and sensitized mice were observed, with their responses to SIPO treatments measured during induced bronchoconstriction resulting from acetylcholine (Ach) challenge. SIPO-generated results were compared with data from treatments using the bronchorelaxant isoproterenol (ISO). The study shows that SIPO in the range of 5-20 Hz induces relaxation in chronic sensitized airways, with significant improvements in respiratory parameters at SIPO values near 1.7 cmH2O irrespective of the frequency of generation.
Collapse
Affiliation(s)
- K L T Roos
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - A M Al-Jumaily
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
6
|
Eskandari M, Nordgren TM, O'Connell GD. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology. Acta Biomater 2019; 97:513-523. [PMID: 31330329 DOI: 10.1016/j.actbio.2019.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Breathing involves fluid-solid interactions in the lung; however, the lack of experimental data inhibits combining the mechanics of air flow to airway deformation, challenging the understanding of how biomaterial constituents contribute to tissue response. As such, lung mechanics research is increasingly focused on exploring the relationship between structure and function. To address these needs, we characterize mechanical properties of porcine airways using uniaxial tensile experiments, accounting for bronchial orientation- and location- dependency. Structurally-reinforced constitutive models are developed to incorporate the role of collagen and elastin fibers embedded within the extrafibrillar matrix. The strain-energy function combines a matrix description (evaluating six models: compressible NeoHookean, unconstrained Ogden, uncoupled Mooney-Rivlin, incompressible Ogden, incompressible Demiray and incompressible NeoHookean), superimposed with non-linear fibers (evaluating two models: exponential and polynomial). The best constitutive formulation representative of all bronchial regions is determined based on curve-fit results to experimental data, accounting for uniqueness and sensitivity. Glycosaminoglycan and collagen composition, alongside tissue architecture, indicate fiber form to be primarily responsible for observed airway anisotropy and heterogeneous mechanical behavior. To the authors' best knowledge, this study is the first to formulate a structurally-motivated constitutive model, augmented with biochemical analysis and microstructural observations, to investigate the mechanical function of proximal and distal bronchi. Our systematic pulmonary tissue characterization provides a necessary foundation for understanding pulmonary mechanics; furthermore, these results enable clinical translation through simulations of airway obstruction in disease, fluid-structure interaction insights during breathing, and potentially, predictive capabilities for medical interventions. STATEMENT OF SIGNIFICANCE: The advancement of pulmonary research relies on investigating the biomechanical response of the bronchial tree. Experiments demonstrating the non-linear, heterogeneous, and anisotropic material behavior of porcine airways are used to develop a structural constitutive model representative of proximal and distal bronchial behavior. Calibrated material parameters exhibit regional variation in biomaterial properties, initially hypothesized to originate from tissue constituents. Further exploration through biochemical and histological analysis indicates mechanical function is primarily governed by microstructural form. The results of this study can be directly used in finite element and fluid-structure interaction models to enable physiologically relevant and more accurate computational simulations aimed to help diagnose and monitor pulmonary disease.
Collapse
Affiliation(s)
- Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California at Riverside, Riverside, CA 92521, USA; BREATHE Center School of Medicine, University of California at Riverside, Riverside, CA 92521, USA; Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tara M Nordgren
- Division of Biomedical Sciences, University of California at Riverside, Riverside, CA 92521, USA; BREATHE Center School of Medicine, University of California at Riverside, Riverside, CA 92521, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Phung TKN, Sinclair SE, Makena P, Molthen RC, Waters CM. Dynamic airway constriction in rats: heterogeneity and response to deep inspiration. Am J Physiol Lung Cell Mol Physiol 2019; 317:L39-L48. [PMID: 31017015 DOI: 10.1152/ajplung.00050.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Airway narrowing due to hyperresponsiveness severely limits gas exchange in patients with asthma. Imaging studies in humans and animals have shown that bronchoconstriction causes patchy patterns of ventilation defects throughout the lungs, and several computational models have predicted that these regions are due to constriction of smaller airways. However, these imaging approaches are often limited in their ability to capture dynamic changes in small airways, and the patterns of constriction are heterogeneous. To directly investigate regional variations in airway narrowing and the response to deep inspirations (DIs), we utilized tantalum dust and microfocal X-ray imaging of rat lungs to obtain dynamic images of airways in an intact animal model. Airway resistance was simultaneously measured using the flexiVent system. Custom-developed software was used to track changes in airway diameters up to generation 19 (~0.3-3 mm). Changes in diameter during bronchoconstriction were then measured in response to methacholine (MCh) challenge. In contrast with the model predictions, we observed significantly greater percent constriction in larger airways in response to MCh challenge. Although there was a dose-dependent increase in total respiratory resistance with MCh, the percent change in airway diameters was similar for increasing doses. A single DI following MCh caused a significant reduction in resistance but did not cause a significant increase in airway diameters. Multiple DIs did, however, cause significant increases in airway diameters. These measurements allowed us to directly quantify dynamic changes in airways during bronchoconstriction and demonstrated greater constriction in larger airways.
Collapse
Affiliation(s)
- Thien-Khoi N Phung
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Scott E Sinclair
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Department of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Patrudu Makena
- Department of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Robert C Molthen
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee.,Department of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee.,Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
8
|
Bates JHT, Rajendran V. Mitigation of airways responsiveness by deep inflation of the lung. J Appl Physiol (1985) 2018; 124:1447-1455. [PMID: 29446713 DOI: 10.1152/japplphysiol.00051.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stretching activated strips of airway smooth muscle (ASM) significantly affects both active force and stiffness due to a temporary reduction of the proportion of cycling myosin cross bridges that are bound to their actin binding sites. For the same reason, stretch applied to ASM in situ by a deep inflation (DI) of the lungs is one of the most potent means of reversing bronchoconstriction. When the DI is sufficiently large, however, and is applied while bronchoconstriction is in the process of developing, the subsequent depression in airway resistance is more persistent than can be attributed simply to temporary detachment of ASM cross bridges. In the present study, we use a computational model to demonstrate that this DI-induced ablation of airway responsiveness can be explained by a dose-dependent reduction in the number of cross bridges available to bind to actin when the ASM in the airway wall is stretched above a critical threshold strain and that this disruption of the contractile apparatus recovers over an order of magnitude longer time scale than that of the simple reattachment of unbound cross bridges. NEW & NOTEWORTHY The mechanisms by which deep inflation of the lung reverse bronchoconstriction and affect subsequent airway responsiveness have important potential implications for asthma, yet remain controversial. This study uses computational modeling to posit a mechanism by which sufficiently vigorous inflations applied during active bronchoconstriction not only transiently reverse bronchoconstriction, but also reduce subsequent airways responsiveness for a period of time. Fitting the model to published data in mice supports this notion.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, Larner College of Medicine, University of Vermont , Burlington, Vermont
| | - Vignesh Rajendran
- Department of Medicine, Larner College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
9
|
Sieck GC. Physiology in Perspective: Structure and Function-Anatomy and Physiology Are Integral. Physiology (Bethesda) 2017; 32:264-265. [PMID: 28615310 DOI: 10.1152/physiol.00014.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
|