1
|
Habibullah MM. The role of CFTR channel in female infertility. HUM FERTIL 2023; 26:1228-1237. [PMID: 36576330 DOI: 10.1080/14647273.2022.2161427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/06/2022] [Indexed: 12/29/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated trans-membrane ATP gated anion channel present in most epithelia, which transports chloride and bicarbonate ions across the apical membrane. Mutations in the CFTR protein are known to result in defective expression or function, notably the inhibition of chloride and bicarbonate transport. This can result in cystic fibrosis (CF), a disorder characterised by thickness of the mucus lining of the epithelial cells of the alimentary and respiratory tracts, sweat ducts and reproductive organs. As a consequence, there is a reduction in fluid transport at the apical surface. While the most devastating effect of CF is mortality, about 98% of men with CF are infertile, consequent of early blockage of or failure to develop the mesonephrotic ducts as well as the vas deferens. The effect of CF of female fertility is less well-understood. This review highlights the genetics and pathophysiology as well as the mechanism of action of CF on female infertility.
Collapse
Affiliation(s)
- Mahmoud M Habibullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
A High Protein Model Alters the Endometrial Transcriptome of Mares. Genes (Basel) 2019; 10:genes10080576. [PMID: 31366166 PMCID: PMC6723232 DOI: 10.3390/genes10080576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
High blood urea nitrogen (BUN) decreases fertility of several mammals; however, the mechanisms have not been investigated in mares. We developed an experimental model to elevate BUN, with urea and control treatments (7 mares/treatment), in a crossover design. Urea-treatment consisted of a loading dose of urea (0.03 g/kg of body weight (BW)) and urea injections over 6 hours (0.03 g/kg of BW/h). Control mares received the same volume of saline solution. Blood samples were collected to measure BUN. Uterine and vaginal pH were evaluated after the last intravenous infusion, then endometrial biopsies were collected for RNA-sequencing with a HiSeq 4000. Cuffdiff (2.2.1) was used to identify the differentially expressed genes (DEG) between urea and control groups (false discovery rate-adjusted p-value < 0.1). There was a significant increase in BUN and a decrease of uterine pH in the urea group compared to the control group. A total of 193 genes were DEG between the urea and control groups, with five genes identified as upstream regulators (ETV4, EGF, EHF, IRS2, and SGK1). The DEG were predicted to be related to cell pH, ion homeostasis, changes in epithelial tissue, and solute carriers. Changes in gene expression reveal alterations in endometrial function that could be associated with adverse effects on fertility of mares.
Collapse
|
3
|
Wetendorf M, Wu SP, Wang X, Creighton CJ, Wang T, Lanz RB, Blok L, Tsai SY, Tsai MJ, Lydon JP, DeMayo FJ. Decreased epithelial progesterone receptor A at the window of receptivity is required for preparation of the endometrium for embryo attachment. Biol Reprod 2018; 96:313-326. [PMID: 28203817 DOI: 10.1095/biolreprod.116.144410] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 01/25/2023] Open
Abstract
The precise timing of progesterone signaling through its cognate receptor, the progesterone receptor (PGR), is critical for the establishment and maintenance of pregnancy. Loss of PGR expression in the murine uterine epithelium during the preimplantation period is a marker for uterine receptivity and embryo attachment. We hypothesized that the decrease in progesterone receptor A (PGRA) expression is necessary for successful embryo implantation. To test this hypothesis, a mouse model constitutively expressing PGRA (mPgrALsL/+) was generated. Expression of PGRA in all uterine compartments (Pgrcre) or uterine epithelium (Wnt7acre) resulted in infertility with defects in embryo attachment and stromal decidualization. Expression of critical PGRA target genes, indian hedgehog, and amphiregulin (Areg), was maintained through the window of receptivity while the estrogen receptor target gene, the leukemia inhibitory factor (Lif), a key regulator of embryo receptivity, was decreased. Transcriptomic and cistromic analyses of the mouse uterus at day 4.5 of pregnancy identified an altered group of genes regulating molecular transport in the control of fluid and ion levels within the uterine interstitial space. Additionally, LIF and its cognate receptor, the leukemia inhibitory factor receptor (LIFR), exhibited PGR-binding events in regions upstream of the transcriptional start sites, suggesting PGRA is inhibiting transcription at these loci. Therefore, downregulation of the PGRA isoform at the window of receptivity is necessary for the attenuation of hedgehog signaling, transcriptional activation of LIF signaling, and modulation of solutes and fluid, producing a receptive environment for the attaching embryo.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Xiaoqiu Wang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Leen Blok
- Department of Obstetrics and Gynaecology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| |
Collapse
|
4
|
Lou Y, Hu M, Mao L, Zheng Y, Jin F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J 2016; 31:447-456. [PMID: 27871060 DOI: 10.1096/fj.201600760r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
Reproductive processes, in particular events that concern pregnancy, are fine-tuned to produce offspring. Reproductive success is of prime importance for the survival of every species. The highly conserved and ubiquitously expressed serum glucocorticoid-regulated kinase 1 (SGK1) was first implicated in infertility as a regulator of a Na+ channel. In this review, we emphasize the prominent role of SGK1 during early pregnancy: 1) balancing uterine luminal fluid secretion and reabsorption to aid blastocyst adhesion and to import nutrients and energy; 2) transducing signals from the blastocyst to the receptive endometrium; 3) inducing multiple genes that are involved in uterine receptivity and trophoblast invasion; 4) regulating cell differentiation and antioxidant defenses at the fetomaternal interface; and 5) contributing to the proliferation and survival of decidual stromal cells. Accordingly, SGK1 coordinates many cellular processes that are crucial to reproductive activities. Aberrant expression or function of SGK1 results in implantation failure and early pregnancy loss. Further investigation of the molecular mechanisms of the function of SGK1 might provide novel diagnostic tools and interventions for reproductive complications.-Lou, Y., Hu, M., Mao, L., Zheng, Y., Jin, F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yingming Zheng
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China; .,Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Zhejiang, China.,Key Laboratory of Reproductive Genetics, National Ministry of Education, Zhejiang University, Zhejiang, China.,Women's Reproductive Health Laboratory of Zhejiang Province, National Ministry of Education, Zhejiang University, Zhejiang, China
| |
Collapse
|
5
|
Skowronska A, Mlotkowska P, Majewski M, Nielsen S, Skowronski MT. Expression of aquaporin 1 and 5 and their regulation by ovarian hormones, arachidonic acid, forskolin and cAMP during implantation in pigs. Physiol Res 2016; 65:637-650. [PMID: 26988150 DOI: 10.33549/physiolres.933095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aquaporin proteins (AQPs) are a family of channels expressed in numerous mammalian tissues, where they play a fundamental role in regulating water transport across cell membranes. Based on reports that AQPs are present in the reproductive system and participate in reproductive processes, our aim was to investigate the effect of progesterone (P(4)), estradiol (E(2)), oxytocin (OT), arachidonic acid (AA), forskolin (FSK) and cyclic adenosine monophosphate (cAMP) on AQP1 and AQP5 expression at mRNA and protein levels in porcine uterine explants from Days 14-16 of gestation in order to determine if they play a role in implantation period in pigs. Quantitative real time PCR and Western-blot analysis revealed that the uterine explants treated with FSK and cAMP produce delayed, but long-term effects on AQP1 abundance (24 h) while AQP5 had a rapid and sustained response to FSK and cAMP in protein content (3 and 24 h). AA increases gene and protein content of AQP1 after longer exposition whereas AQP5 increases after 3 h only at the protein level. Both AQPs potentially remains under control of steroid hormones. OT has been shown to increase AQP1, and decrease AQP5 mRNA, without visible changes in protein content. P(4), E(2), AA, FSK and cAMP caused the appearance of AQP5 expression in the basolateral plasma membrane of the epithelial cells. The staining represents most likely AQP5 functioning mechanism for both absorption and reabsorption across the glandular epithelium.
Collapse
Affiliation(s)
- A Skowronska
- University of Warmia and Mazury in Olsztyn, Department of Human Physiology, Olsztyn, Poland.
| | | | | | | | | |
Collapse
|
6
|
Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. ACTA ACUST UNITED AC 2016; 108:19-32. [DOI: 10.1002/bdrc.21122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Lien M. Davidson
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| |
Collapse
|