1
|
Tan Y, Liu Q, Wang Z, Pu Q, Shi S, Su J. Plateau zokors (Eospalax baileyi) respond to secondary metabolites from the roots of Stellera chamaejasme by enhancing hepatic inflammatory factors and metabolic pathway genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109368. [PMID: 35589064 DOI: 10.1016/j.cbpc.2022.109368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
Herbivores rarely consume toxic plants. An increase in the proportion of toxic plant secondary metabolites (PSMs) in poisonous plants can promote detoxification and related metabolic capacity of animals. Poisonous plants with thick taproots like Stellera chamaejasme (SC) are important stored food for the plateau zokor (Eospalax baileyi) during the winter and promote the development of detoxification mechanisms in this animal. In this study, plateau zokors were administered gavages of 0.2, 1.05, and 2.10 ml/kg SC water extracts. Serum samples were collected from plateau zokors to measure the levels of transaminases and oxidative stress. Transcriptome analysis was conducted to evaluate the differential genes of multiple metabolic pathways to investigate the relationship between the physiological processes and metabolic adaptation capacity of these animals in response to SC. After SC administration, plateau zokors showed significant hepatic granular degeneration and inflammatory reactions in the liver and aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels increased in a dose-dependent manner. Further, differential expression was also found in the plateau zokor livers, with most enrichment in inflammation and detoxification metabolism pathways. The metabolic adaptation responses in P450 xenobiotic clearance, bile secretion, and pancreatic secretion (Gusb, Hmgcr, Gstm1, Gstp1, and Eobag004630005095) were verified by mRNA network analysis as key factors related to the mechanism. Plateau zokors respond to SC PSMs through changes in liver physiology, biochemistry, and genes in multiple metabolic pathways, validating our hypothesis that plateau zokors can metabolize PSMs when they ingest toxic plants.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Pu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China.
| |
Collapse
|
2
|
Larsen PA, Matocq MD. Emerging genomic applications in mammalian ecology, evolution, and conservation. J Mammal 2019. [DOI: 10.1093/jmammal/gyy184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
3
|
Connors PK, Malenke JR, Dearing MD. Ambient temperature‐mediated changes in hepatic gene expression of a mammalian herbivore (
Neotoma lepida
). Mol Ecol 2017; 26:4322-4338. [DOI: 10.1111/mec.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 02/04/2023]
Affiliation(s)
| | - Jael R. Malenke
- Department of Biology University of Utah Salt Lake City UT USA
| | | |
Collapse
|
4
|
Król E, Douglas A, Tocher DR, Crampton VO, Speakman JR, Secombes CJ, Martin SAM. Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon. BMC Genomics 2016; 17:156. [PMID: 26925977 PMCID: PMC4772681 DOI: 10.1186/s12864-016-2473-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The potential for alternative plant protein sources to replace limited marine ingredients in fish feeds is important for the future of the fish farming industry. However, plant ingredients in fish feeds contain antinutritional factors (ANFs) that can promote gut inflammation (enteritis) and compromise fish health. It is unknown whether enteritis induced by plant materials with notable differences in secondary metabolism is characterised by common or distinct gene expression patterns, and how using feeds with single vs mixed plant proteins may affect the gut transcriptome and fish performance. We used Atlantic salmon parr to investigate the transcriptome responses of distal gut to varying dietary levels (0-45%) of soy protein concentrate (SPC) and faba bean (Vicia faba) protein concentrate (BPC) following an 8-week feeding trial. Soybean meal (SBM) and fish meal (FM) were used as positive and negative controls for enteritis, respectively. Gene expression profiling was performed using a microarray platform developed and validated for Atlantic salmon. RESULTS Different plant protein materials (SPC, BPC and SBM) generated substantially different gut gene expression profiles, with relatively few transcriptomic alterations (genes, pathways and GO terms) common for all plant proteins used. When SPC and BPC were simultaneously included in the diet, they induced less extensive alterations of gut transcriptome than diets with either SPC or BPC singly, probably due to reduced levels of individual ANFs. The mixed plant protein diets were also associated with improved body composition of fish relative to the single plant protein diets, which may provide evidence for a link between the magnitude of changes in gut transcriptome and whole-animal performance. CONCLUSIONS Our results indicate that gut transcriptomic profiling provides a useful tool for testing the applicability of alternative protein sources for aquaculture feeds and designing diets with reduced impact of ANFs on fish health. Ultimately, understanding diet-gut interactions and intestinal homeostasis in farmed fish is important to maximise performance and to ensure that aquaculture continues to be a sustainable source of food for a growing world population.
Collapse
Affiliation(s)
- Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | | | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
5
|
Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds. BMC Ecol 2014; 14:23. [PMID: 25123454 PMCID: PMC4153740 DOI: 10.1186/1472-6785-14-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event-the dietary inclusion of creosote bush (Larrea tridentata)-that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). RESULTS By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. CONCLUSIONS The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the toxins in creosote and the evolution of diet switching in woodrats. On a larger level, this work advances our understanding of the mechanisms used by mammalian herbivores to process toxic diets and illustrates the importance of the selective relationship of PSCs in shaping herbivore diversity.
Collapse
|