1
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Liu ZJ, Zhu CF. Causal relationship between insulin resistance and sarcopenia. Diabetol Metab Syndr 2023; 15:46. [PMID: 36918975 PMCID: PMC10015682 DOI: 10.1186/s13098-023-01022-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Sarcopenia is a multifactorial disease characterized by reduced muscle mass and function, leading to disability, death, and other diseases. Recently, the prevalence of sarcopenia increased considerably, posing a serious threat to health worldwide. However, no clear international consensus has been reached regarding the etiology of sarcopenia. Several studies have shown that insulin resistance may be an important mechanism in the pathogenesis of induced muscle attenuation and that, conversely, sarcopenia can lead to insulin resistance. However, the causal relationship between the two is not clear. In this paper, the pathogenesis of sarcopenia is analyzed, the possible intrinsic causal relationship between sarcopenia and insulin resistance examined, and research progress expounded to provide a basis for the clinical diagnosis, treatment, and study of the mechanism of sarcopenia.
Collapse
Affiliation(s)
- Zi-jian Liu
- Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101 China
| | - Cui-feng Zhu
- Shenzhen Hospital of Southern Medical University, Guangdong, 518101 China
| |
Collapse
|
3
|
Yao T, Yan H, Zhu X, Zhang Q, Kong X, Guo S, Feng Y, Wang H, Hua Y, Zhang J, Mittelman SD, Tontonoz P, Zhou Z, Liu T, Kong X. Obese Skeletal Muscle-Expressed Interferon Regulatory Factor 4 Transcriptionally Regulates Mitochondrial Branched-Chain Aminotransferase Reprogramming Metabolome. Diabetes 2022; 71:2256-2271. [PMID: 35713959 PMCID: PMC9630087 DOI: 10.2337/db22-0260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 01/28/2023]
Abstract
In addition to the significant role in physical activity, skeletal muscle also contributes to health through the storage and use of macronutrients associated with energy homeostasis. However, the mechanisms of regulating integrated metabolism in skeletal muscle are not well-defined. Here, we compared the skeletal muscle transcriptome from obese and lean control subjects in different species (human and mouse) and found that interferon regulatory factor 4 (IRF4), an inflammation-immune transcription factor, conservatively increased in obese subjects. Thus, we investigated whether IRF4 gain of function in the skeletal muscle predisposed to obesity and insulin resistance. Conversely, mice with specific IRF4 loss in skeletal muscle showed protection against the metabolic effects of high-fat diet, increased branched-chain amino acids (BCAA) level of serum and muscle, and reprogrammed metabolome in serum. Mechanistically, IRF4 could transcriptionally upregulate mitochondrial branched-chain aminotransferase (BCATm) expression; subsequently, the enhanced BCATm could counteract the effects caused by IRF4 deletion. Furthermore, we demonstrated that IRF4 ablation in skeletal muscle enhanced mitochondrial activity, BCAA, and fatty acid oxidation in a BCATm-dependent manner. Taken together, these studies, for the first time, established IRF4 as a novel metabolic driver of macronutrients via BCATm in skeletal muscle in terms of diet-induced obesity.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi, China
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Yonghao Feng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Disease, Fudan University, Shanghai, China
| | - Steven D. Mittelman
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
6
|
Rovina RL, da Rocha AL, Marafon BB, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. One Bout of Aerobic Exercise Can Enhance the Expression of Nr1d1 in Oxidative Skeletal Muscle Samples. Front Physiol 2021; 12:626096. [PMID: 33597895 PMCID: PMC7882602 DOI: 10.3389/fphys.2021.626096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
The nuclear receptor subfamily 1, group D member 1 (Nr1d1), plays a role in the skeletal muscle's oxidative capacity, mitochondrial biogenesis, atrophy genes, and muscle fiber size. In light of the effects of physical exercise, the present study investigates the acute response of Nr1d1 and genes related to atrophy and mitochondrial biogenesis on endurance and resistance exercise protocols. In this investigation, we observed, after one bout of endurance exercise, an upregulation of Nr1d1 in soleus muscle, but not in the gastrocnemius, and some genes related to mitochondrial biogenesis and atrophy were enhanced as well. Also, analysis of muscle transcripts from diverse isogenic BXD mice families revealed that the strains with higher Nr1d1 gene expression displayed upregulation of AMPK signaling and mitochondrial-related genes. In summary, a single session of endurance exercise can enhance the Nr1d1 mRNA levels in an oxidative muscle.
Collapse
Affiliation(s)
- Rafael L. Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Roberson PA, Mobley CB, Romero MA, Haun CT, Osburn SC, Mumford PW, Vann CG, Greer RA, Ferrando AA, Roberts MD. LAT1 Protein Content Increases Following 12 Weeks of Resistance Exercise Training in Human Skeletal Muscle. Front Nutr 2021; 7:628405. [PMID: 33521042 PMCID: PMC7840583 DOI: 10.3389/fnut.2020.628405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Amino acid transporters are essential for cellular amino acid transport and promoting protein synthesis. While previous literature has demonstrated the association of amino acid transporters and protein synthesis following acute resistance exercise and amino acid supplementation, the chronic effect of resistance exercise and supplementation on amino acid transporters is unknown. The purpose herein was to determine if amino acid transporters and amino acid metabolic enzymes were related to skeletal muscle hypertrophy following resistance exercise training with different nutritional supplementation strategies. Methods: 43 college-aged males were separated into a maltodextrin placebo (PLA, n = 12), leucine (LEU, n = 14), or whey protein concentrate (WPC, n = 17) group and underwent 12 weeks of total-body resistance exercise training. Each group's supplement was standardized for total energy and fat, and LEU and WPC supplements were standardized for total leucine (6 g/d). Skeletal muscle biopsies were obtained prior to training and ~72 h following each subject's last training session. Results: All groups increased type I and II fiber cross-sectional area (fCSA) following training (p < 0.050). LAT1 protein increased following training (p < 0.001) and increased more in PLA than LEU and WPC (p < 0.050). BCKDHα protein increased and ATF4 protein decreased following training (p < 0.001). Immunohistochemistry indicated total LAT1/fiber, but not membrane LAT1/fiber, increased with training (p = 0.003). Utilizing all groups, the change in ATF4 protein, but no other marker, trended to correlate with the change in fCSA (r = 0.314; p = 0.055); however, when regression analysis was used to delineate groups, the change in ATF4 protein best predicted the change in fCSA only in LEU (r 2 = 0.322; p = 0.043). In C2C12 myoblasts, LAT1 protein overexpression caused a paradoxical decrease in protein synthesis levels (p = 0.002) and decrease in BCKDHα protein (p = 0.001). Conclusions: Amino acid transporters and metabolic enzymes are affected by resistance exercise training, but do not appear to dictate muscle fiber hypertrophy. In fact, overexpression of LAT1 in vitro decreased protein synthesis.
Collapse
Affiliation(s)
- Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - C Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Cody T Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Rory A Greer
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Arny A Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | | |
Collapse
|
8
|
Buj R, Chen CW, Dahl ES, Leon KE, Kuskovsky R, Maglakelidze N, Navaratnarajah M, Zhang G, Doan MT, Jiang H, Zaleski M, Kutzler L, Lacko H, Lu Y, Mills GB, Gowda R, Robertson GP, Warrick JI, Herlyn M, Imamura Y, Kimball SR, DeGraff DJ, Snyder NW, Aird KM. Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. Cell Rep 2020; 28:1971-1980.e8. [PMID: 31433975 PMCID: PMC6716532 DOI: 10.1016/j.celrep.2019.07.084] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Reprogrammed metabolism and cell cycle dysregulation are two cancer hallmarks. p16 is a cell cycle inhibitor and tumor suppressor that is upregulated during oncogene-induced senescence (OIS). Loss of p16 allows for uninhibited cell cycle progression, bypass of OIS, and tumorigenesis. Whether p16 loss affects pro-tumorigenic metabolism is unclear. We report that suppression of p16 plays a central role in reprogramming metabolism by increasing nucleotide synthesis. This occurs by activation of mTORC1 signaling, which directly mediates increased translation of the mRNA encoding ribose-5-phosphate isomerase A (RPIA), a pentose phosphate pathway enzyme. p16 loss correlates with activation of the mTORC1-RPIA axis in multiple cancer types. Suppression of RPIA inhibits proliferation only in p16-low cells by inducing senescence both in vitro and in vivo. These data reveal the molecular basis whereby p16 loss modulates pro-tumorigenic metabolism through mTORC1-mediated upregulation of nucleotide synthesis and reveals a metabolic vulnerability of p16-null cancer cells. Senescence bypass through p16 loss predisposes to transformation and tumorigenesis. Buj et al. found that the loss of p16 upregulates nucleotide metabolism through increased mTORC1-mediated translation of RPIA to bypass senescence in an RB-independent manner. Thus, the mTORC1-RPIA axis is a metabolic vulnerability for p16-null cancers.
Collapse
Affiliation(s)
- Raquel Buj
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Chi-Wei Chen
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Erika S Dahl
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kelly E Leon
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Rostislav Kuskovsky
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | | | - Maithili Navaratnarajah
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Institute, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Mary T Doan
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Helen Jiang
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Michael Zaleski
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Lydia Kutzler
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Holly Lacko
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Raghavendra Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua I Warrick
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Institute, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Yuka Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Scot R Kimball
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - David J DeGraff
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Katherine M Aird
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Gottlieb RA, Bhowmick NA. Pushing the Heart Over a KLF(15). J Am Coll Cardiol 2020; 74:1820-1822. [PMID: 31582142 DOI: 10.1016/j.jacc.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Roberta A Gottlieb
- Department of Medicine, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Neil A Bhowmick
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, Cedars-Sinai Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
10
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|
11
|
Salinas-Rubio D, Tovar AR, Noriega LG. Emerging perspectives on branched-chain amino acid metabolism during adipocyte differentiation. Curr Opin Clin Nutr Metab Care 2018; 21:49-57. [PMID: 29035970 DOI: 10.1097/mco.0000000000000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Adipogenesis has been extensively studied in the context of carbohydrate and lipid metabolism. However, little information exists on the role of amino acid metabolism during adipocyte differentiation. Here, we review how branched-chain amino acid (BCAA) metabolism is modified during adipogenesis and, due to the limited information in the area, address questions that remain to be answered with further research. RECENT FINDINGS BCAAs are rapidly consumed during adipocyte differentiation and are indispensable for this process. Furthermore, we describe how BCAA catabolic enzymes and the metabolic fate of BCAAs are modified during adipogenesis. SUMMARY Obesity is a chronic disease characterized by increased adipose tissue due to either an increase in the size (hypertrophy) and/or number of adipocytes (hyperplasia). Hyperplasia is determined by the rate of adipogenesis. Therefore, understanding the mechanism that modulates adipogenesis in the context of amino acid metabolism will help to establish pharmacological and dietary interventions involving the type and amount of dietary protein for the treatment of obesity and its associated comorbidities.Video abstract http://links.lww.com/COCN/A11.
Collapse
Affiliation(s)
- Daniela Salinas-Rubio
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | | |
Collapse
|
12
|
Drummond MJ, Reidy PT, Baird LM, Dalley BK, Howard MT. Leucine Differentially Regulates Gene-Specific Translation in Mouse Skeletal Muscle. J Nutr 2017; 147:1616-1623. [PMID: 28615380 PMCID: PMC5572492 DOI: 10.3945/jn.117.251181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Amino acids, especially leucine, are particularly effective in promoting protein synthesis. Leucine is known to increase the rate of protein synthesis in skeletal muscle through the mechanistic target of rapamycin complex 1-dependent, as well as -independent, signaling pathways. However, the overall translation program is poorly defined, and it is unknown how the activation of these pathways differentially controls the translation of specific mRNAs.Objective: Ribosome profiling and RNA sequencing were used to precisely define the translational program activated by an acute oral dose of leucine.Methods: Adult male C57BL/6 mice were deprived of food overnight before the delivery of an acute dose of l-leucine (9.4 mg) (n = 6) or vehicle (n = 5) and tissues collected 30 min later. Ribosome footprints and total RNA were isolated and subjected to deep sequencing. Changes in gene-specific mRNA abundance and ribosome occupancy were determined between the leucine-treated and control groups by aligning sequence reads to Reference Sequence database mRNAs and applying statistical features of the Bioconductor package edgeR.Results: Our data revealed mRNA features that confer translational control of skeletal muscle mRNAs in response to an acute dose of leucine. The subset of skeletal muscle mRNAs that are activated consists largely of terminal oligopyrimidine mRNAs (false discovery rate: <0.05), whereas those with reduced translation had 5' untranslated regions with increased length. Only the small nuclear RNAs, which are required for ribosome biogenesis, were significantly altered in RNA abundance. The inferred functional translational program activated by dietary leucine includes increased protein synthesis capacity and energy metabolism, upregulation of sarcomere-binding proteins, modulation of circadian rhythm, and suppression of select immune components.Conclusions: These results clarify the translation program acutely stimulated by leucine in mouse skeletal muscle and establish new methodologies for use in future studies of skeletal muscle disease or aging and further examination of downstream effects of leucine on gene expression.
Collapse
Affiliation(s)
| | | | | | - Brian K Dalley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | |
Collapse
|