1
|
Artificial Neural Network-Based Identification of Associations between UCP2 and UCP3 Gene Polymorphisms and Meat Quantity Traits. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6017374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In identifying mutations occurring in distinct cow breeds, genetic elements must be taken into consideration. More recently, these hereditary features have gained attention throughout the world. As in many underdeveloped nations, to bridge the deficit in molecular genetics, multiple solutions are required. The inner membrane anion carrier superfamily contains the uncoupling proteins (UCPs), vital to energy regulation. Research on heredity has shown that variations in the UCP2 and UCP3 genes are connected to obesity and metabolic syndrome. This research aimed to investigate if any mutation in the UCP 2 and UCP 3 genes are related to many characteristics in Pakistan’s three indigenous cattle breeds using artificial neural network (ANN). For better analysis, the output of the ANN model is loaded into the Primer Premier 3 software. Using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing, the results of this study indicated 07 variations in the exon 4 region of the UCP2 gene and 03 variants in the exon 3 area of the UCP3 gene among 215 indigenous cow breeds. The association study revealed that the g.C35G mutation in the UCP3 gene is strongly related to meat quantity characteristics such as carcass weight and drip percentage (P0.05) but not with body height or hip width (
). Sequence analysis showed five distinct diplotypes: AA, BC, AC, CC, and CD. Cattle with the novel heterozygous diplotype BC perform better in carcass trait and drip percentage than animals with other genotypes. The study’s findings suggest that the UCP3 gene may be utilized for marker-assisted selection (MAS) and breed mixing in Pakistan cattle breeds to aid in the country’s economic growth.
Collapse
|
2
|
Warden CH, Bettaieb A, Min E, Fisler JS, Haj FG, Stern JS. Chow fed UC Davis strain female Lepr fatty Zucker rats exhibit mild glucose intolerance, hypertriglyceridemia, and increased urine volume, all reduced by a Brown Norway strain chromosome 1 congenic donor region. PLoS One 2017; 12:e0188175. [PMID: 29211750 PMCID: PMC5718614 DOI: 10.1371/journal.pone.0188175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
Our objective is to identify genes that influence the development of any phenotypes of type 2 diabetes (T2D) or kidney disease in obese animals. We use the reproductively isolated UC Davis fatty Zucker strain rat model in which the defective chromosome 4 leptin receptor (LeprfaSte/faSte) results in fatty obesity. We previously produced a congenic strain with the distal half of chromosome 1 from the Brown Norway strain (BN) on a Zucker (ZUC) background (BN.ZUC-D1Rat183–D1Rat90). Previously published studies in males showed that the BN congenic donor region protects from some phenotypes of renal dysfunction and T2D. We now expand our studies to include females and expand phenotyping to gene expression. We performed diabetes and kidney disease phenotyping in chow-fed females of the BN.ZUC-D1Rat183-D1Rat90 congenic strain to determine the specific characteristics of the UC Davis model. Fatty LeprfaSte/faSte animals of both BN and ZUC genotype in the congenic donor region had prediabetic levels of fasting blood glucose and blood glucose 2 hours after a glucose tolerance test. We observed significant congenic strain chromosome 1 genotype effects of the BN donor region in fatty females that resulted in decreased food intake, urine volume, glucose area under the curve during glucose tolerance test, plasma triglyceride levels, and urine glucose excretion per day. In fatty females, there were significant congenic strain BN genotype effects on non-fasted plasma urea nitrogen, triglyceride, and creatinine. Congenic region genotype effects were observed by quantitative PCR of mRNA from the kidney for six genes, all located in the chromosome 1 BN donor region, with potential effects on T2D or kidney function. The results are consistent with the hypothesis that the BN genotype chromosome 1 congenic region influences traits of both type 2 diabetes and kidney function in fatty UC Davis ZUC females and that there are many positional candidate genes.
Collapse
Affiliation(s)
- Craig H. Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, United States of America
| | - Esther Min
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Janis S. Fisler
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Fawaz G. Haj
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Judith S. Stern
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
- Internal Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
3
|
Gularte-Mérida R, Farber CR, Verdugo RA, Islas-Trejo A, Famula TR, Warden CH, Medrano JF. Overlapping mouse subcongenic strains successfully separate two linked body fat QTL on distal MMU 2. BMC Genomics 2015; 16:16. [PMID: 25613955 PMCID: PMC4308015 DOI: 10.1186/s12864-014-1191-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mouse chromosome 2 is linked to growth and body fat phenotypes in many mouse crosses. With the goal to identify the underlying genes regulating growth and body fat on mouse chromosome 2, we developed five overlapping subcongenic strains that contained CAST/EiJ donor regions in a C57BL/6J (hg/hg) background (hg is a spontaneous deletion of 500 Kb on mouse chromosome 10). To fine map QTL on distal mouse chromosome 2 a total of 1,712 F2 mice from the five subcongenic strains, plus 278 F2 mice from the HG2D founder congenic strain were phenotyped and analyzed. Interval mapping (IM) and composite IM (CIM) were performed on body weight and body fat traits on a combination of SNP and microsatellite markers, which generated a high-density genotyping panel. RESULTS Phenotypic analysis and interval mapping of total fat mass identified two QTL on distal mouse chromosome 2. One QTL between 150 and 161 Mb, Fatq2a, and the second between 173.3 and 175.6 Mb, Fatq2b. The two QTL reside in different congenic strains with significant total fat differences between homozygous cast/cast and b6/b6 littermates. Both of these QTL were previously identified only as a single QTL affecting body fat, Fatq2. Furthermore, through a novel approach referred here as replicated CIM, Fatq2b was mapped to the Gnas imprinted locus. CONCLUSIONS The integration of subcongenic strains, high-density genotyping, and CIM succesfully partitioned two previously linked QTL 20 Mb apart, and the strongest QTL, Fatq2b, was fine mapped to a ~2.3 Mb region interval encompassing the Gnas imprinted locus.
Collapse
Affiliation(s)
- Rodrigo Gularte-Mérida
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA. .,Current Address: Unit of Animal Genomics, GIGA - Research, Avenue de l'Hôpital 1, 4031, Sart-Tilman, Belgique.
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Ricardo A Verdugo
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA. .,Current Address: Programa de Genética Humana ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA.
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA.
| | - Craig H Warden
- Rowe Genetics Program and Department of Pediatrics, University of California, Davis, CA, 95616-8521, USA.
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA.
| |
Collapse
|
4
|
Brown Norway chromosome 1 congenic reduces symptoms of renal disease in fatty Zucker rats. PLoS One 2014; 9:e87770. [PMID: 24498189 PMCID: PMC3909223 DOI: 10.1371/journal.pone.0087770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
We previously reported that a congenic rat with Brown Norway (BN) alleles on chromosome 1 reduces renal disease of 15-week old fatty Zucker rats (ZUC). Development of renal disease in fatty BN congenic and fatty ZUC rats from 9 through 28 weeks is now examined. Analysis of urine metabolites by 1H nuclear magnetic resonance (NMR) spectroscopy revealed a significantly increased urinary loss of glucose, myo-inositol, urea, creatine, and valine in ZUC. Food intake was lower in the BN congenic rats at weeks 9–24, but they weighed significantly more at 28 weeks compared with the ZUC group. Fasting glucose was significantly higher in ZUC than congenic and adiponectin levels were significantly lower in ZUC, but there was no significant genotype effect on Insulin levels. Glucose tolerance tests exhibited no significant differences between ZUC and congenic when values were normalized to basal glucose levels. Quantitative PCR on livers revealed evidence for higher gluconeogenesis in congenics than ZUC at 9 weeks. Plasma urea nitrogen and creatinine were more than 2-fold higher in 28-week ZUC. Twelve urine protein markers of glomerular, proximal and distal tubule disease were assayed at three ages. Several proteins that indicate glomerular and proximal tubular disease increased with age in both congenic and ZUC. Epidermal growth factor (EGF) level, a marker whose levels decrease with distal tubule disease, was significantly higher in congenics. Quantitative histology of 28 week old animals revealed the most significant genotype effect was for tubular dilation and intratubular protein. The congenic donor region is protective of kidney disease, and effects on Type 2 diabetes are likely limited to fasting glucose and adiponectin. The loss of urea together with a small increase of food intake in ZUC support the hypothesis that nitrogen balance is altered in ZUC from an early age.
Collapse
|