1
|
Nguyen BN, Hong S, Choi S, Lee CG, Yoo G, Kim M. Dexamethasone-induced muscle atrophy and bone loss in six genetically diverse collaborative cross founder strains demonstrates phenotypic variability by Rg3 treatment. J Ginseng Res 2024; 48:310-322. [PMID: 38707648 PMCID: PMC11069000 DOI: 10.1016/j.jgr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 05/07/2024] Open
Abstract
Background Osteosarcopenia is a common condition characterized by the loss of both bone and muscle mass, which can lead to an increased risk of fractures and disability in older adults. The study aimed to elucidate the response of various mouse strains to treatment with Rg3, one of the leading ginsenosides, on musculoskeletal traits and immune function, and their correlation. Methods Six Collaborative Cross (CC) founder strains induced muscle atrophy and bone loss with dexamethasone (15 mg/kg) treatment for 1 month, and half of the mice for each strain were orally administered Rg3 (20 mg/kg). Different responses were observed depending on genetic background and Rg3 treatment. Results Rg3 significantly increased grip strength, running performance, and expression of muscle and bone health-related genes in a two-way analysis of variance considering the genetic backgrounds and Rg3 treatment. Significant improvements in grip strength, running performance, bone area, and muscle mass, and the increased gene expression were observed in specific strains of PWK/PhJ. For traits related to muscle, bone, and immune functions, significant correlations between traits were confirmed following Rg3 administration compared with control mice. The phenotyping analysis was compiled into a public web resource called Rg3-OsteoSarco. Conclusion This highlights the complex interplay between genetic determinants, pathogenesis of muscle atrophy and bone loss, and phytochemical bioactivity and the need to move away from single inbred mouse models to improve their translatability to genetically diverse humans. Rg3-OsteoSarco highlights the use of CC founder strains as a valuable tool in the field of personalized nutrition.
Collapse
Affiliation(s)
- Bao Ngoc Nguyen
- College of Dentistry, Gangneung Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Soyeon Hong
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Sowoon Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - GyHye Yoo
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
2
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
3
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of strain-specific diet-induced metabolic syndrome in mice informed by epigenetic and transcriptional regulation. PLoS Genet 2023; 19:e1010997. [PMID: 37871105 PMCID: PMC10621921 DOI: 10.1371/journal.pgen.1010997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adam Davidovich
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anna C. Salvador
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Gabrielle C. Manno
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - M. Nazmul Huda
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Brian J. Bennett
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, Goas A, Gross G, Kleerebezem M, Lane J, Maukonen J, Penna ALB, Pot B, Valdes AM, Walton G, Weiss A, Zanzer YC, Venlet NV, Miani M. Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Adv Nutr 2022; 13:1450-1461. [PMID: 35776947 PMCID: PMC9526856 DOI: 10.1093/advances/nmac075] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023] Open
Abstract
Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.
Collapse
Affiliation(s)
| | - Thomas Gurry
- Pharmaceutical Biochemistry group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (PSI-WS), University of Geneva/University of Lausanne, Geneva, Switzerland
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Veerle Dam
- Sensus BV (Royal Cosun), Roosendaal, The Netherlands
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Almudena Goas
- Department of Food, Nutrition, and Exercise Sciences, University of Surrey, Guildford, United Kingdom
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt| Mead Johnson Nutrition Institute, Nijmegen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jonathan Lane
- Health and Happiness Group, H&H Research, Cork, Ireland
| | | | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University, São José do Rio Preto, Brazil
| | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | - Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Adrienne Weiss
- Yili Innovation Center Europe, Wageningen, The Netherlands
| | | | - Naomi V Venlet
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| |
Collapse
|