1
|
O'Brien KM, Rix AS, Jasmin A, Lavelle E. The hypoxia response pathway in the Antarctic fish Notothenia coriiceps is functional despite a poly Q/E insertion mutation in HIF-1α. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101218. [PMID: 38412701 PMCID: PMC11128347 DOI: 10.1016/j.cbd.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Antarctic notothenioid fishes, inhabiting the oxygen-rich Southern Ocean, possess a polyglutamine and glutamic acid (poly Q/E) insertion mutation in the master transcriptional regulator of oxygen homeostasis, hypoxia- inducible factor-1α (HIF-1α). To determine if this mutation impairs the ability of HIF-1 to regulate gene expression in response to hypoxia, we exposed Notothenia coriiceps, with a poly Q/E insertion mutation in HIF-1α that is 9 amino acids long, to hypoxia (2.3 mg L-1 O2) or normoxia (10 mg L -1 O2) for 12 h. Heart ventricles, brain, liver, and gill tissue were harvested and changes in gene expression quantified using RNA sequencing. Levels of glycogen and lactate were also quantified to determine if anaerobic metabolism increases in response to hypoxia. Exposure to hypoxia resulted in 818 unique differentially expressed genes (DEGs) in liver tissue of N. coriiceps. Many hypoxic genes were induced, including ones involved in the MAP kinase and FoxO pathways, glycolytic metabolism, and vascular remodeling. In contrast, there were fewer than 104 unique DEGs in each of the other tissues sampled. Lactate levels significantly increased in liver in response to hypoxia, indicating that anaerobic metabolism increases in response to hypoxia in this tissue. Overall, our results indicate that the hypoxia response pathway is functional in N. coriiceps despite a poly Q/E mutation in HIF-1α, and confirm that Antarctic fishes are capable of altering gene expression in response to hypoxia.
Collapse
Affiliation(s)
- K M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA.
| | - A S Rix
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA.
| | - A Jasmin
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA
| | - E Lavelle
- National Center for Genome Resources, Santa Fe, NM 87505, USA.
| |
Collapse
|
2
|
Wang H, Wang X, Shen Y, Wang Y, Yang T, Sun J, Liu S. SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway. Int Immunopharmacol 2023; 119:110230. [PMID: 37137262 DOI: 10.1016/j.intimp.2023.110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a characteristic pathophysiological change of obstructive sleep apnea syndrome (OSAS). Inflammation of microglia induced by CIH, plays a vital role in OSAS-associated cognitive dysfunction. SUMO-specific proteases 1 (SENP1) has been implicated in tumor inflammatory microenvironment and cells migration. However, the role of SENP1 in CIH-induced neuroinflammation remains unknown. We aimed to investigate the effect of SENP1 on neuroinflammation and neuronal injury. After the preparation of SENP1 overexpression microglia and SENP1 knockout mouse, CIH microglia and mice were established using an intermittent hypoxia device. Results showed that CIH reduced the level of SENP1 and TOM1, induced the SUMOylation of TOM1, and promoted microglial migration, neuroinflammation, neuronal amyloid-beta 42 (Aβ42) deposition and apoptosis in vitro and in vivo. After SENP1 overexpression in vitro, the enhanced SUMOylation of TOM1 was inhibited; the level of TOM1 and microglial migration were enhanced; neuroinflammation, neuronal Aβ42 deposition and apoptosis were significantly reduced. However, the administration of siRNA-TOM1 suppressed microglial migration, neuroinflammation, neuronal Aβ42 deposition and apoptosis. After SENP1 knockout in vivo, the SUMOylation enhancement of TOM1 was accelerated, microglial migration was inhibited. Neuroinflammation, neuronal Aβ42 deposition and apoptosis, cognitive impairment was significantly exacerbated. Overall, the results demonstrated that SENP1 promoted microglial migration by alleviating the de-SUMOylation of TOM1, thus contributing to attenuate neuroinflammation, neuronal Aβ42 deposition and neuronal apoptosis induced by CIH.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xu Wang
- Research Center of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yubin Shen
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanmin Wang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tianyun Yang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jinyuan Sun
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Song Liu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
3
|
Shan R, Zhou H, Liu X, Su G, Liu G, Zhang X, Sun C, Yu Z, Zhan L, Huang Z. Neuroprotective effects of four different fluids on cerebral ischaemia/reperfusion injury in rats through stabilization of the blood-brain barrier. Eur J Neurosci 2021; 54:5586-5600. [PMID: 34258805 PMCID: PMC9292910 DOI: 10.1111/ejn.15385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Protecting the blood–brain barrier (BBB) is a potential strategy to treat cerebral ischaemic injury. We previously reported that hypertonic sodium chloride hydroxyethyl starch 40 (HSH) treatment alleviates brain injury induced by transient middle cerebral artery occlusion (tMCAO). However, other fluids, including 20% mannitol (MN), 3% hypertonic sodium chloride (HTS) and hydroxyethyl starch 130/0.4 solution (HES), have the same effect as HSH in cerebral ischaemia/reperfusion injury (CI/RI) remains unclear. The present study evaluated the protective effects of these four fluids on the BBB in tMCAO rats. Sprague–Dawley (SD) rats were randomly assigned to six groups. A CI/RI rat model was established by tMCAO for 120 min followed by 24 h of reperfusion. The sham and tMCAO groups were treated with normal saline (NS), whereas the other four groups were treated with the four fluids. After 24 h of reperfusion, neurological function, brain oedema, brain infarction volume, permeability of the BBB, cortical neuron loss and protein and mRNA expression were assessed. The four fluids (especially HSH) alleviated neurological deficits and decreased the infarction volume, brain oedema, BBB permeability and cortical neuron loss induced by tMCAO. The expression levels of GFAP, IL‐1β, TNF‐α, MMP‐9, MMP‐3, AQP4, MMP‐9, PDGFR‐β and RGS5 were decreased, whereas the expression levels of laminin and claudin‐5 were increased. These data suggested that small‐volume reperfusion using HSH, HES, MN and HTS ameliorated CI/RI, probably by attenuating BBB disruption and postischaemic inflammation, with HSH exerting the strongest neuroprotective effect.
Collapse
Affiliation(s)
- Reai Shan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute of Pain Medicine, Gannan Medical University, Ganzhou, China
| | - Hongyan Zhou
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xinfang Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Guangjun Su
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Guangsen Liu
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Xiaoli Zhang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Cong Sun
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Zining Yu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Lifang Zhan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute of Pain Medicine, Gannan Medical University, Ganzhou, China.,Department of Physiology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Zhou D, Xue J, Miyamoto Y, Poulsen O, Eckmann L, Haddad GG. Microbiota Modulates Cardiac Transcriptional Responses to Intermittent Hypoxia and Hypercapnia. Front Physiol 2021; 12:680275. [PMID: 34248668 PMCID: PMC8267877 DOI: 10.3389/fphys.2021.680275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital-San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Wang H, Yang T, Sun J, Zhang S, Liu S. SENP1 modulates microglia-mediated neuroinflammation toward intermittent hypoxia-induced cognitive decline through the de-SUMOylation of NEMO. J Cell Mol Med 2021; 25:6841-6854. [PMID: 34120412 PMCID: PMC8278079 DOI: 10.1111/jcmm.16689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Intermittent hypoxia (IH)‐induced cognition decline is related to the neuroinflammation in microglia. SUMOylation is associated with multiple human diseases, which can be reversed by sentrin/SUMO‐specific proteases 1 (SENP1). Herein, we investigated the role of SENP1 in IH‐induced inflammation and cognition decline. BV‐2 microglial cells and mice were used for inflammatory response and cognition function evaluation following IH treatment. Biochemical analysis and Morris water maze methods were used to elaborate the mechanism of SENP1 in IH impairment. Molecular results revealed that IH induced the inflammatory response, as evidenced by the up‐regulation of NF‐κB activation, IL‐1β and TNF‐α in vitro and in vivo. Moreover, IH decreased the expression of SENP1, and increased the SUMOylation of NEMO, not NF‐κB P65. Moreover, SENP1 overexpression inhibited IH‐induced inflammatory response and SUMOylation of NEMO. However, the inhibitions were abolished by siRNA‐NEMO. In contrast, SENP1 depletion enhanced IH‐induced inflammatory response and SUMOylation of NEMO, accompanying with increased latency and reduced dwell time in mice. Overall, the results demonstrated that SENP1 regulated IH‐induced neuroinflammation by modulating the SUMOylation of NEMO, thus activating the NF‐κB pathway, revealing that targeting SENP1 in microglia may represent a novel therapeutic strategy for IH‐induced cognitive decline.
Collapse
Affiliation(s)
- Hongwei Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyun Yang
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyuan Sun
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sisen Zhang
- Affiliated Zhengzhou People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Zhengzhou, China
| | - Song Liu
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Yang LQ, Chen M, Zhang JL, Ren DL, Hu B. Hypoxia Delays Oligodendrocyte Progenitor Cell Migration and Myelin Formation by Suppressing Bmp2b Signaling in Larval Zebrafish. Front Cell Neurosci 2018; 12:348. [PMID: 30337858 PMCID: PMC6180284 DOI: 10.3389/fncel.2018.00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Hypoxia in newborns tends to result in developmental deficiencies in the white matter of the brain. As previous studies of the effects of hypoxia on neuronal development in rodents and human infants have been unable to use in vivo imaging, insight into the dynamic development of oligodendrocytes (OLs) in the central nervous system under hypoxia is limited. Here, we developed a visual model to study OL development using sublethal postnatal hypoxia in zebrafish larvae. We observed that hypoxia significantly suppressed OL progenitor cell migration toward the dorsum using in vivo imaging. Further, we found that hypoxia affected myelination, as indicated by thinner myelin sheaths and by a downregulation of myelin basic protein expression. Bmp2b protein expression was also significantly downregulated following hypoxia onset. Using gain of function and loss of function experiments, we demonstrated that the Bmp2b protein was associated with the regulation of OL development. Thus, our work provides a visual hypoxia model within which to observe OL development in vivo, and reveals the underlying mechanisms involved in these processes.
Collapse
Affiliation(s)
- Lei-Qing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Min Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Long Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Da-Long Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Wang L, Cui S, Ma L, Kong L, Geng X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. INSECT MOLECULAR BIOLOGY 2015; 24:634-648. [PMID: 26387499 DOI: 10.1111/imb.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
Collapse
Affiliation(s)
- L Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - S Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Kong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - X Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
8
|
Watzlawik JO, Kahoud RJ, O’Toole RJ, White KAM, Ogden AR, Painter MM, Wootla B, Papke LM, Denic A, Weimer JM, Carey WA, Rodriguez M. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice. PLoS One 2015; 10:e0128007. [PMID: 26020269 PMCID: PMC4447462 DOI: 10.1371/journal.pone.0128007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by dysmyelination, abnormal spinal neuron composition, and neuro-motor deficits in adulthood.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Robert J. Kahoud
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ryan J. O’Toole
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. M. White
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Alyssa R. Ogden
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Meghan M. Painter
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Louisa M. Papke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jill M. Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - William A. Carey
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
9
|
Interstitial 12p deletion involving more than 40 genes in a patient with postnatal microcephaly, psychomotor delay, optic nerve atrophy, and facial dysmorphism. Meta Gene 2015; 2:72-82. [PMID: 25606391 PMCID: PMC4287802 DOI: 10.1016/j.mgene.2013.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 11/24/2022] Open
Abstract
Interstitial deletions of chromosome 12p are rare, and the phenotype spectrum is therefore still unknown. The thirteen patients reported so far suffer from developmental delay, optic nerve hypoplasia, micropenis, hypoplastic hair and skin, oligodontia, brachydactyly, and arterial hypertension. We report a de novo 12p12.2-p11.22 deletion of 9.2 Mb detected by array CGH analysis in a boy with global developmental delay, muscular hypotonia, postnatal microcephaly, facial dysmorphism including small ears, epicanthus, broad nasal bridge and hypoplastic nostrils. In addition, the patient had optic nerve atrophy, inverted nipples, micropenis, and a hemangioma. The deleted region encompasses more than 40 reference genes. We compare phenotype and deletion extent of our index patient to that of previous reports and thereby contribute to the understanding of interstitial 12p deletion phenotypes. Knowledge of the pattern of this deletion phenotype will help clinicians to diagnose this abnormality in their patients and to counsel the parents accordingly. Further descriptions may be able to contribute to the clarification.
Collapse
|
10
|
Juliano C, Sosunov S, Niatsetskaya Z, Isler JA, Utkina-Sosunova I, Jang I, Ratner V, Ten V. Mild intermittent hypoxemia in neonatal mice causes permanent neurofunctional deficit and white matter hypomyelination. Exp Neurol 2014; 264:33-42. [PMID: 25476492 DOI: 10.1016/j.expneurol.2014.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Very low birth weight (VLBW) premature infants experience numerous, often self-limited non-bradycardic episodes of intermittent hypoxemia (IH). We hypothesized that these episodes of IH affect postnatal white matter (WM) development causing hypomyelination and neurological handicap in the absence of cellular degeneration. Based on clinical data from ten VLBW neonates; a severity, daily duration and frequency of non-bradycardic IH episodes were reproduced in neonatal mice. Changes in heart rate and cerebral blood flow during IH were recorded. A short-term and long-term neurofunctional performance, cerebral content of myelin basic protein (MBP), 2'3' cyclic-nucleotide 3-phosphodiesterase (CNPase), electron microscopy of axonal myelination and the extent of cellular degeneration were examined. Neonatal mice exposed to IH exhibited no signs of cellular degeneration, yet demonstrated significantly poorer olfactory discrimination, wire holding, beam and bridge crossing, and walking-initiation tests performance compared to controls. In adulthood, IH-mice demonstrated no alteration in navigational memory. However, sensorimotor performance on rota-rod, wire-holding and beam tests was significantly worse compared to naive littermates. Both short- and long-term neurofunctional deficits were coupled with decreased MBP, CNPase content and poorer axonal myelination compared to controls. In neonatal mice mild, non-ischemic IH stress, mimicking that in VLBW preterm infants, replicates a key phenotype of non-cystic WM injury: permanent hypomyelination and sensorimotor deficits. Because this phenotype has developed in the absence of cellular degeneration, our data suggest that cellular mechanisms of WM injury induced by mild IH differ from that of cystic periventricular leukomalacia where the loss of myelin-producing cells and axons is the major mechanism of injury.
Collapse
Affiliation(s)
- Courtney Juliano
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Sergey Sosunov
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Zoya Niatsetskaya
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Joseph A Isler
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Irina Utkina-Sosunova
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Isaac Jang
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Veniamin Ratner
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA
| | - Vadim Ten
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, USA.
| |
Collapse
|
11
|
Bhojwani D, Sabin ND, Pei D, Yang JJ, Khan RB, Panetta JC, Krull KR, Inaba H, Rubnitz JE, Metzger ML, Howard SC, Ribeiro RC, Cheng C, Reddick WE, Jeha S, Sandlund JT, Evans WE, Pui CH, Relling MV. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol 2014; 32:949-59. [PMID: 24550419 DOI: 10.1200/jco.2013.53.0808] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Methotrexate (MTX) can cause significant clinical neurotoxicity and asymptomatic leukoencephalopathy. We sought to identify clinical, pharmacokinetic, and genetic risk factors for these MTX-related toxicities during childhood acute lymphoblastic leukemia (ALL) therapy and provide data on safety of intrathecal and high-dose MTX rechallenge in patients with neurotoxicity. PATIENTS AND METHODS Prospective brain magnetic resonance imaging was performed at four time points for 369 children with ALL treated in a contemporary study that included five courses of high-dose MTX and 13 to 25 doses of triple intrathecal therapy. Logistic regression modeling was used to evaluate clinical and pharmacokinetic factors, and a genome-wide association study (GWAS) was performed to identify germline polymorphisms for their association with neurotoxicities. RESULTS Fourteen patients (3.8%) developed MTX-related clinical neurotoxicity. Of 13 patients rechallenged with intrathecal and/or high-dose MTX, 12 did not experience recurrence of neurotoxicity. Leukoencephalopathy was found in 73 (20.6%) of 355 asymptomatic patients and in all symptomatic patients and persisted in 74% of asymptomatic and 58% of symptomatic patients at the end of therapy. A high 42-hour plasma MTX to leucovorin ratio (measure of MTX exposure) was associated with increased risk of leukoencephalopathy in multivariable analysis (P = .038). GWAS revealed polymorphisms in genes enriched for neurodevelopmental pathways with plausible mechanistic roles in neurotoxicity. CONCLUSION MTX-related clinical neurotoxicity is transient, and most patients can receive subsequent MTX without recurrence of acute or subacute symptoms. All symptomatic patients and one in five asymptomatic patients develop leukoencephalopathy that can persist until the end of therapy. Polymorphisms in genes related to neurogenesis may contribute to susceptibility to MTX-related neurotoxicity.
Collapse
Affiliation(s)
- Deepa Bhojwani
- All authors: St Jude Children's Research Hospital; and Deepa Bhojwani, Jun J. Yang, Hiroto Inaba, Jeffrey E. Rubnitz, Monika L. Metzger, Scott C. Howard, Raul C. Ribeiro, Sima Jeha, John T. Sandlund, and Ching-Hon Pui, University of Tennessee Health Sciences Center, College of Medicine, Memphis, TN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Berahovich RD, Zabel BA, Lewén S, Walters MJ, Ebsworth K, Wang Y, Jaen JC, Schall TJ. Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 2014; 141:111-22. [PMID: 24116850 DOI: 10.1111/imm.12176] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/13/2013] [Accepted: 09/27/2013] [Indexed: 12/24/2022] Open
Abstract
The concentration of CXCL12/SDF-1 in the bloodstream is tightly regulated, given its central role in leucocyte and stem/progenitor cell egress from bone marrow and recruitment to sites of inflammation or injury. The mechanism responsible for this regulation is unknown. Here we show that both genetic deletion and pharmacological inhibition of CXCR7, a high-affinity CXCL12 receptor, caused pronounced increases in plasma CXCL12 levels. The rise in plasma CXCL12 levels was associated with an impairment in the ability of leucocytes to migrate to a local source of CXCL12. Using a set of complementary and highly sensitive techniques, we found that CXCR7 protein is expressed at low levels in multiple organs in both humans and mice. In humans, CXCR7 was detected primarily on venule endothelium and arteriole smooth muscle cells. CXCR7 expression on venule endothelium was also documented in immunodeficient mice and CXCR7(+/lacZ) mice. The vascular expression of CXCR7 therefore gives it immediate access to circulating CXCL12. These studies suggest that endothelial CXCR7 regulates circulating CXCL12 levels and that CXCR7 inhibitors might be used to block CXCL12-mediated cell migration for therapeutic purposes.
Collapse
|
13
|
Walters MJ, Ebsworth K, Berahovich RD, Penfold MET, Liu SC, Al Omran R, Kioi M, Chernikova SB, Tseng D, Mulkearns-Hubert EE, Sinyuk M, Ransohoff RM, Lathia JD, Karamchandani J, Kohrt HEK, Zhang P, Powers JP, Jaen JC, Schall TJ, Merchant M, Recht L, Brown JM. Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats. Br J Cancer 2014; 110:1179-88. [PMID: 24423923 PMCID: PMC3950859 DOI: 10.1038/bjc.2013.830] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/12/2013] [Accepted: 12/18/2013] [Indexed: 12/26/2022] Open
Abstract
Background: In experimental models of glioblastoma multiforme (GBM), irradiation (IR) induces local expression of the chemokine CXCL12/SDF-1, which promotes tumour recurrence. The role of CXCR7, the high-affinity receptor for CXCL12, in the tumour's response to IR has not been addressed. Methods: We tested CXCR7 inhibitors for their effects on tumour growth and/or animal survival post IR in three rodent GBM models. We used immunohistochemistry to determine where CXCR7 protein is expressed in the tumours and in human GBM samples. We used neurosphere formation assays with human GBM xenografts to determine whether CXCR7 is required for cancer stem cell (CSC) activity in vitro. Results: CXCR7 was detected on tumour cells and/or tumour-associated vasculature in the rodent models and in human GBM. In human GBM, CXCR7 expression increased with glioma grade and was spatially associated with CXCL12 and CXCL11/I-TAC. In the rodent GBM models, pharmacological inhibition of CXCR7 post IR caused tumour regression, blocked tumour recurrence, and/or substantially prolonged survival. CXCR7 expression levels on human GBM xenograft cells correlated with neurosphere-forming activity, and a CXCR7 inhibitor blocked sphere formation by sorted CSCs. Conclusions: These results indicate that CXCR7 inhibitors could block GBM tumour recurrence after IR, perhaps by interfering with CSCs.
Collapse
Affiliation(s)
- M J Walters
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - K Ebsworth
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - R D Berahovich
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - M E T Penfold
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - S-C Liu
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - R Al Omran
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - M Kioi
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - S B Chernikova
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - D Tseng
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - E E Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M Sinyuk
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - R M Ransohoff
- 1] Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA [2] Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - J D Lathia
- 1] Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA [2] Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - J Karamchandani
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - H E K Kohrt
- Department of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - P Zhang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - J P Powers
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - J C Jaen
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - T J Schall
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA 94043, USA
| | - M Merchant
- Department of Neurology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - L Recht
- Department of Neurology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - J M Brown
- Department of Radiation Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013; 8:e77859. [PMID: 24205000 PMCID: PMC3808424 DOI: 10.1371/journal.pone.0077859] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC) was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.
Collapse
|
15
|
Heart rate responses to autonomic challenges in obstructive sleep apnea. PLoS One 2013; 8:e76631. [PMID: 24194842 PMCID: PMC3806804 DOI: 10.1371/journal.pone.0076631] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/23/2013] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is accompanied by structural alterations and dysfunction in central autonomic regulatory regions, which may impair dynamic and static cardiovascular regulation, and contribute to other syndrome pathologies. Characterizing cardiovascular responses to autonomic challenges may provide insights into central nervous system impairments, including contributions by sex, since structural alterations are enhanced in OSA females over males. The objective was to assess heart rate responses in OSA versus healthy control subjects to autonomic challenges, and, separately, characterize female and male patterns. We studied 94 subjects, including 37 newly-diagnosed, untreated OSA patients (6 female, age mean ± std: 52.1 ± 8.1 years; 31 male aged 54.3 ± 8.4 years), and 57 healthy control subjects (20 female, 50.5 ± 8.1 years; 37 male, 45.6 ± 9.2 years). We measured instantaneous heart rate with pulse oximetry during cold pressor, hand grip, and Valsalva maneuver challenges. All challenges elicited significant heart rate differences between OSA and control groups during and after challenges (repeated measures ANOVA, p<0.05). In post-hoc analyses, OSA females showed greater impairments than OSA males, which included: for cold pressor, lower initial increase (OSA vs. control: 9.5 vs. 7.3 bpm in females, 7.6 vs. 3.7 bpm in males), OSA delay to initial peak (2.5 s females/0.9 s males), slower mid-challenge rate-of-increase (OSA vs. control: -0.11 vs. 0.09 bpm/s in females, 0.03 vs. 0.06 bpm/s in males); for hand grip, lower initial peak (OSA vs. control: 2.6 vs. 4.6 bpm in females, 5.3 vs. 6.0 bpm in males); for Valsalva maneuver, lower Valsalva ratio (OSA vs. control: 1.14 vs. 1.30 in females, 1.29 vs. 1.34 in males), and OSA delay during phase II (0.68 s females/1.31 s males). Heart rate responses showed lower amplitude, delayed onset, and slower rate changes in OSA patients over healthy controls, and impairments may be more pronounced in females. The dysfunctions may reflect central injury in the syndrome, and suggest autonomic deficiencies that may contribute to further tissue and functional pathologies.
Collapse
|
16
|
Berahovich RD, Penfold MET, Miao Z, Walters MJ, Jaen JC, Schall TJ. Differences in CXCR7 protein expression on rat versus mouse and human splenic marginal zone B cells. Immunol Lett 2013; 154:77-9. [PMID: 23954811 DOI: 10.1016/j.imlet.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Robert D Berahovich
- ChemoCentryx, Inc., 850 Maude Avenue, Mountain View, CA 94043, United States.
| | | | | | | | | | | |
Collapse
|
17
|
Zhou D, Haddad GG. Genetic analysis of hypoxia tolerance and susceptibility in Drosophila and humans. Annu Rev Genomics Hum Genet 2013; 14:25-43. [PMID: 23808366 DOI: 10.1146/annurev-genom-091212-153439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygen is essential for metazoans' life on earth. Oxygen deprivation, or hypoxia, contributes significantly to the pathophysiology of many human diseases. A better understanding of the fundamental molecular and genetic basis for adaptation to low-oxygen environments will help us develop therapeutic strategies to prevent or treat diseases that have hypoxia as a major part of their pathogenesis. Different cells and organisms have evolved different ways to cope with this life-threatening challenge, and the molecular and genetic mechanisms remain largely unknown. The current revolution of genomic technology has advanced our understanding of the genetic basis of many diseases and conditions, including hypoxia tolerance and susceptibility. In this review, we highlight the progress made in understanding the molecular responses to hypoxia in an animal model organism (Drosophila melanogaster) and genetic adaptation to high-altitude hypoxia in humans.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics (Division of Respiratory Medicine) and
| | | |
Collapse
|
18
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
19
|
Miwa JM, Lester HA, Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 2012; 27:187-99. [PMID: 22875450 DOI: 10.1152/physiol.00002.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.
Collapse
Affiliation(s)
- Julie M Miwa
- California Institute of Technology, Pasadena, California, USA.
| | | | | |
Collapse
|
20
|
van Helden YGJ, Godschalk RWL, van Schooten FJ, Keijer J. Organ specificity of beta-carotene induced lung gene-expression changes in Bcmo1-/- mice. Mol Nutr Food Res 2012. [PMID: 23203725 DOI: 10.1002/mnfr.201200277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SCOPE Whole genome transcriptome analysis of male and female beta-carotene 15,15'-monooxygenase knockout (Bcmo1(-/-) ) and Bcmo1(+/+) (wild-type) mice with or without 14 wk of BC supplementation was done. We previously showed that only 1.8% of the genes regulated by BC in lung were also regulated in liver and inguinal white adipose tissue (iWAT), suggesting lung specific responses. Here, we explicitly questioned the lung specificity. METHODS AND RESULTS We show that BC supplementation resulted in an opposite direction of gene-regulation in male compared to female Bcmo1(-/-) mice in lung, liver, and iWAT. This supports a systemic effect of BC on steroid hormone metabolism mediated responses. Lung, liver, and iWAT of female Bcmo1(-/-) mice showed an increased inflammatory response, which was counteracted by supplementation of BC. This supports a genotype dependent increased sensitivity of female mice for vitamin A deficiency. Finally, the effect of BC on Wnt signaling in male Bcmo1(-/-) mice was examined. Frizzled homolog 6 (Fzd6) downregulation was seen in all three tissues. Collagen triple helix containing 1 (Cthrc1) downregulation was seen in lung tissue only, suggesting specificity. Upregulation of genes involved in oxygen sensing was seen in lung and iWAT, while protocadherin upregulation was only seen in lung. CONCLUSION Our results demonstrate that effects of BC are strongly sex dependent. While effects of BC on hormone metabolism mediated responses and inflammation are systemic, effects on Wnt signaling may be lung specific.
Collapse
|
21
|
Kraus P, Xing X, Lim SL, Fun ME, Sivakamasundari V, Yap SP, Lee H, Karuturi RKM, Lufkin T. Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos. BMC Res Notes 2012; 5:232. [PMID: 22583621 PMCID: PMC3497855 DOI: 10.1186/1756-0500-5-232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/05/2012] [Indexed: 11/14/2022] Open
Abstract
Background In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential “background noise” for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. Results Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. Conclusion Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, Gozal D. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol 2011; 226:495-508. [PMID: 21953180 DOI: 10.1002/path.2980] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/24/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Premature babies are at high risk for both infantile apnoea and long-term neurobehavioural deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development, and synapse formation mainly occur in the third trimester of gestation and first postnatal year, infantile apnoea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 and 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix, and cerebellum, but not in the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG, and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultrastructural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin, and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of synapsin I, synaptophysin, and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioural sequelae.
Collapse
Affiliation(s)
- Jun Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Felfly H, Xue J, Zambon AC, Muotri A, Zhou D, Haddad GG. Identification of a neuronal gene expression signature: role of cell cycle arrest in murine neuronal differentiation in vitro. Am J Physiol Regul Integr Comp Physiol 2011; 301:R727-45. [PMID: 21677276 PMCID: PMC3174756 DOI: 10.1152/ajpregu.00217.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Stem cells are a potential key strategy for treating neurodegenerative diseases in which the generation of new neurons is critical. A better understanding of the characteristics and molecular properties of neural stem cells (NSCs) and differentiated neurons can help with assessing neuronal maturity and, possibly, in devising better therapeutic strategies. We have performed an in-depth gene expression profiling study of murine NSCs and primary neurons derived from embryonic mouse brains. Microarray analysis revealed a neuron-specific gene expression signature that distinguishes primary neurons from NSCs, with elevated levels of transcripts involved in neuronal functions, such as neurite development and axon guidance in primary neurons and decreased levels of multiple cytokine transcripts. Among the differentially expressed genes, we found a statistically significant enrichment of genes in the ephrin, neurotrophin, CDK5, and actin pathways, which control multiple neuronal-specific functions. We then artificially blocked the cell cycle of NSCs with mitomycin C (MMC) and examined cellular morphology and gene expression signatures. Although these MMC-treated NSCs displayed a neuronal morphology and expressed some neuronal differentiation marker genes, their gene expression patterns were very different from primary neurons. We conclude that 1) fully differentiated mouse primary neurons display a specific neuronal gene expression signature; 2) cell cycle block at the S phase in NSCs with MMC does not induce the formation of fully differentiated neurons; 3) cytokines change their expression pattern during differentiation of NSCs into neurons; and 4) signaling pathways of ephrin, neurotrophin, CDK5, and actin, related to major neuronal features, are dynamically enriched in genes showing changes in expression level.
Collapse
Affiliation(s)
- Hady Felfly
- Department of Pediatrics, School of Medicine, University of California San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Azad P, Ryu J, Haddad GG. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic Biol Med 2011; 51:530-8. [PMID: 21616137 PMCID: PMC3138732 DOI: 10.1016/j.freeradbiomed.2011.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 02/07/2023]
Abstract
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
| | - Julie Ryu
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Gabriel G. Haddad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
- To whom correspondence should be addressed: Gabriel G. Haddad, MD, Departments of Pediatrics (Section of Respiratory Medicine), 9500 Gilman Dr MC0735, La Jolla, CA 92093, USA, Phone: +1-858-822-4740, Fax- 1- 858-534-6972,
| |
Collapse
|
25
|
Cai J, Tuong CM, Gozal D. A neonatal mouse model of intermittent hypoxia associated with features of apnea in premature infants. Respir Physiol Neurobiol 2011; 178:210-7. [PMID: 21699999 DOI: 10.1016/j.resp.2011.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
A neonatal mouse model of intermittent hypoxia (IH) simulating the recurring hypoxia/reoxygenation episodes of apnea of prematurity (AOP) was developed. C57BL/6 P2 pups were culled for exposure to either intermittent hypoxia or intermittent air as control. The IH paradigms consisted of alternation cycles of 20.9% O2 and either 8.0% or 5.7% O2 every 120 or 140s for 6h a day during daylight hours from day 2 to day 10 postnatally, i.e., roughly equivalent to human brain development in the perinatal period. IH exposures elicited modest to severe decrease in oxygen saturation along with bradycardia in neonatal mice, which were severity-dependent. Hypomyelination in both central and peripheral nervous systems was observed despite the absence of visible growth retardation. The neonatal mouse model of IH in this study partially fulfills the current diagnostic criteria with features of AOP, and provides opportunities to reproduce in rodents some of the pathophysiological changes associated with this disorder, such as alterations in myelination.
Collapse
Affiliation(s)
- Jun Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | |
Collapse
|
26
|
Zhao HW, Haddad GG. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta 2011; 32 Suppl 2:S104-8. [PMID: 21353099 DOI: 10.1016/j.placenta.2010.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 01/05/2023]
Abstract
Oxygen (O(2)) is essential for aerobic life; however, the level of O(2), whether too low (hypoxia) or too high (hyperoxia), can induce oxidative injury and increase morbidity and mortality. Disruption of O(2) homeostasis represents a major aspect of many disease etiologies and pathobiology. In the past, our laboratory has been using Drosophila melanogaster to investigate the cellular and molecular aspects of the response to hypoxia and oxidative stress. There are several advantages for using Drosophila as a model system, the most important one being an evolutionary conservation of genetic and signaling pathways from Drosophila to mammals. As a proof of this concept, we have shown that we can substantially improve the tolerance of human cells in culture by transfecting these cells with particular Drosophila genes. In this review, we summarize the recent findings from our laboratory using Drosophila as a model system to investigate the genetic basis of hypoxia/hyperoxia tolerance. We have done microarray studies and identified several oxidative stress resistance genes that play an important role in individual paradigms such as constant or intermittent hypoxia, short term (days) or long term (generations) hypoxia/hyperoxia. Our studies provide evidence that a pattern of oxidative stress is specific in inducing a gene expression profile which, in turn, plays an important role in modulating the phenotype. To improve our understanding of oxidative and hypoxic stress as well as its associated diseases, multi-disciplinary approaches are necessary and critical in the study of complicated issues in systems biology.
Collapse
Affiliation(s)
- H W Zhao
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, CA 92093-0735, USA
| | | |
Collapse
|
27
|
Harrison JF, Haddad GG. Effects of Oxygen on Growth and Size: Synthesis of Molecular, Organismal, and Evolutionary Studies withDrosophila melanogaster. Annu Rev Physiol 2011; 73:95-113. [DOI: 10.1146/annurev-physiol-012110-142155] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jon F. Harrison
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501;
| | - Gabriel G. Haddad
- Departments of Pediatrics and Neuroscience, University of California, San Diego, La Jolla, California 92093-0735;
- Rady Children's Hospital, San Diego, California 92123
| |
Collapse
|
28
|
Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics 2010; 11:119-37. [PMID: 20922447 DOI: 10.1007/s10142-010-0195-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/06/2010] [Accepted: 09/13/2010] [Indexed: 02/03/2023]
Abstract
Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.
Collapse
|
29
|
Xue J, Mraiche F, Zhou D, Karmazyn M, Oka T, Fliegel L, Haddad GG. Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol Genomics 2010; 42:374-83. [PMID: 20460605 DOI: 10.1152/physiolgenomics.00064.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In myocardial disease, elevated expression and activity of Na(+)/H(+) exchanger isoform 1 (NHE1) are detrimental. To better understand the involvement of NHE1, transgenic mice with elevated heart-specific NHE1 expression were studied. N-line mice expressed wild-type NHE1, and K-line mice expressed activated NHE1. Cardiac morphology, interstitial fibrosis, and cardiac function were examined by histological staining and echocardiography. Differences in gene expression between the N-line or K-line and nontransgenic littermates were probed with genechip analysis. We found that NHE1 K-line (but not N-line) hearts developed hypertrophy, including elevated heart weight-to-body weight ratio and increased cross-sectional area of the cardiomyocytes, interstitial fibrosis, as well as depressed cardiac function. N-line hearts had modest changes in gene expression (50 upregulations and 99 downregulations, P < 0.05), whereas K-line hearts had a very strong transcriptional response (640 upregulations and 677 downregulations, P < 0.05). In addition, the magnitude of expression alterations was much higher in K-line than N-line mice. The most significant changes in gene expression were involved in cardiac hypertrophy, cardiac necrosis/cell death, and cardiac infarction. Secreted phosphoprotein 1 and its signaling pathways were upregulated while peroxisome proliferator-activated receptor gamma signaling was downregulated in K-line mice. Our study shows that expression of activated NHE1 elicits specific pathways of gene activation in the myocardium that lead to cardiac hypertrophy, cell death, and infarction.
Collapse
Affiliation(s)
- Jin Xue
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0735, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Heart rhythm genomic fabric in hypoxia. Biochem Biophys Res Commun 2009; 391:1769-74. [PMID: 20044980 DOI: 10.1016/j.bbrc.2009.12.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 11/23/2022]
Abstract
The molecular mechanisms by which chronic hypoxia, whether constant (CCH) or intermittent (CIH), alters the heart rhythm are still under debate. Expression level, control, maturational profile and intercoordination of 54 genes encoding heart rhythm determinants (HRDs) were analyzed in 36 mice subjected for 1, 2 or 4 weeks of their early life to normal atmospheric conditions or to CCH or CIH. Our analysis revealed a complex network of genes encoding various heart rate, inotropy and development controllers, receptors, ion channels and transporters, ankyrins, epigenetic modulators and intercalated disc components (adherens, cadherins, catenins, desmosomal, gap and tight junction proteins). The network is remodeled during maturation and substantially and differently altered by CIH and CCH. Gene Prominence Analysis that ranks the genes according to their expression stability and networking within functional gene webs, confirmed the HRD status of certain epigenetic modulators and components of the intercalated discs not yet associated with arrhythmia.
Collapse
|
31
|
Zhou D, Visk DW, Haddad GG. Drosophila, a golden bug, for the dissection of the genetic basis of tolerance and susceptibility to hypoxia. Pediatr Res 2009; 66:239-47. [PMID: 19542900 PMCID: PMC6620046 DOI: 10.1203/pdr.0b013e3181b27275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously discovered that the adult Drosophila melanogaster is tolerant to a low O2 environment, withstanding hours of total O2 deprivation without showing any evidence of cell injury. Subsequently, our laboratory embarked on the study of hypoxia tolerance using a mutagenesis and overexpression screens to begin to investigate loss-of-function or gain-of-function phenotypes. Both have given us promising results and, in this article, we detail some of the interesting results. Furthermore, several years ago, we have also started an experimental "Darwinian" selection to generate a fly strain that can perpetuate through all of its life cycle stages in hypoxic environments. Through microarrays and bioinformatic analyses, we have obtained genes (e.g. Notch pathway genes) that play an important role in hypoxia resistance. In addition, we also detail a proof of principle that Drosophila genes that are beneficial in fly resistance to hypoxia can also be as well in mammalian cells. We believe that the mechanisms that we are uncovering in Drosophila will allow us to gain insight regarding susceptibility and tolerance to low O2 and will therefore pave the way to develop better therapies for ailments that afflict humans as a consequence of low O2 delivery or low blood O2 levels.
Collapse
Affiliation(s)
- Dan Zhou
- Departments of Pediatrics, University of California, San Diego, CA 92093
| | - DeeAnn W. Visk
- Division of Biology, University of California, San Diego, CA 92093
| | - Gabriel G. Haddad
- Departments of Pediatrics and Neuroscience, University of California, San Diego, CA 92093, Rady Children’s Hospital, San Diego, CA 92123
| |
Collapse
|
32
|
Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. Int J Dev Neurosci 2009; 27:863-71. [PMID: 19482072 DOI: 10.1016/j.ijdevneu.2009.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022] Open
Abstract
Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain.
Collapse
Affiliation(s)
- Joey Scafidi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
33
|
Azad P, Zhou D, Russo E, Haddad GG. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One 2009; 4:e5371. [PMID: 19401761 PMCID: PMC2670512 DOI: 10.1371/journal.pone.0005371] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/02/2009] [Indexed: 01/26/2023] Open
Abstract
Background Constant hypoxia (CH) and intermittent hypoxia (IH) occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s) in D. melanogaster after exposure to severe (1% O2) intermittent or constant hypoxia. Methodology/Principal Findings Our microarray analysis has identified multiple gene families that are up- or down-regulated in response to acute CH or IH. We observed distinct responses to IH and CH in gene expression that varied in the number of genes and type of gene families. We then studied the role of candidate genes (up-or down-regulated) in hypoxia tolerance (adult survival) for longer periods (CH-7 days, IH-10 days) under severe CH or IH. Heat shock proteins up-regulation (specifically Hsp23 and Hsp70) led to a significant increase in adult survival (as compared to controls) of P-element lines during CH. In contrast, during IH treatment the up-regulation of Mdr49 and l(2)08717 genes (P-element lines) provided survival advantage over controls. This suggests that the increased transcript levels following treatment with either paradigm play an important role in tolerance to severe hypoxia. Furthermore, by over-expressing Hsp70 in specific tissues, we found that up-regulation of Hsp70 in heart and brain play critical role in tolerance to CH in flies. Conclusions/Significance We observed that the gene expression response to IH or CH is specific and paradigm-dependent. We have identified several genes Hsp23, Hsp70, CG1600, l(2)08717 and Mdr49 that play an important role in hypoxia tolerance whether it is in CH or IH. These data provide further clues about the mechanisms by which IH or CH lead to cell injury and morbidity or adaptation and survival.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics, Section of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dan Zhou
- Department of Pediatrics, Section of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Erilynn Russo
- Department of Pediatrics, Section of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Gabriel G. Haddad
- Department of Pediatrics, Section of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Neuroscience, University of California San Diego, La Jolla, California, United States of America
- The Rady Children's Hospital, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Chahboune H, Ment LR, Stewart WB, Rothman DL, Vaccarino FM, Hyder F, Schwartz ML. Hypoxic injury during neonatal development in murine brain: correlation between in vivo DTI findings and behavioral assessment. Cereb Cortex 2009; 19:2891-901. [PMID: 19380380 DOI: 10.1093/cercor/bhp068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Preterm birth results in significant neurodevelopmental disability. A neonatal rodent model of chronic sublethal hypoxia (CSH), which mimics effects of preterm birth, was used to characterize neurodevelopmental consequences of prolonged exposure to hypoxia using tissue anisotropy measurements from diffusion tensor imaging. Corpus callosum, cingulum, and fimbria of the hippocampus revealed subtle, yet significant, hypoxia-induced modifications during maturation (P15-P51). Anisotropy differences between control and CSH mice were greatest at older ages (>P40) in these regions. Neither somatosensory cortex nor caudate putamen revealed significant differences between control and CSH mice at any age. We assessed control and CSH mice using tests of general activity and cognition for behavioral correlates of morphological changes. Open-field task revealed greater locomotor activity in CSH mice early in maturation (P16-P18), whereas by adolescence (P40-P45) differences between control and CSH mice were insignificant. These results may be associated with lack of cortical and subcortical anisotropy differences between control and CSH mice. Spatial-delayed alternation and free-swim tasks in adulthood revealed lasting impairments for CSH mice in spatial memory and behavioral laterality. These differences may correlate with anisotropy decreases in hippocampal and callosal connectivities of CSH mice. Thus, CSH mice revealed developmental and behavioral deficits that are similar to those observed in low birth weight preterm infants.
Collapse
Affiliation(s)
- Halima Chahboune
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Chronic intermittent or episodic hypoxia, as occurs during a number of disease states, can have devastating effects, and prolonged exposure to this hypoxia can result in cell injury or cell death. Indeed, intermittent hypoxia activates a number of signaling pathways that are involved in oxygen sensing, oxidative stress, metabolism, catecholamine biosynthesis, and immune responsiveness. The cumulative effect of these processes over time can undermine cell integrity and lead to a decline in function. Furthermore, the ability to respond adequately to various stressors is hampered, and this is traditionally defined as premature aging or senescence. This review highlights recent advances in our understanding of the cellular and molecular mechanisms that are involved in the response to intermittent hypoxia and the potential interplay among various pathways that may accelerate the aging process.
Collapse
Affiliation(s)
- Robert M Douglas
- Department of Pediatrics, University of California San Diego, and Rady Children's Hospital-San Diego, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|