1
|
Barbosa JMG, Cunha ALRR, David LC, Camelo ÍN, Martins NM, Galvão FS, Mendonça DR, Venâncio MT, Cunha RDS, Filho ARC, Veloso IM, Fernandes JJR, Jorge da Cunha PH, Antoniosi Filho NR. A veterinary cerumenomic assay for bovine laminitis identification. Vet Res Commun 2024; 48:1003-1013. [PMID: 38051450 DOI: 10.1007/s11259-023-10271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
Bovine laminitis disorder results in animal welfare and economic concerns in dairy and beef farms worldwide. However, the affected metabolic pathways, pathophysiologic characteristics, and inflammatory mechanisms remain unclear, hampering the development of new diagnostics. Using cerumen (earwax) as a source of volatile metabolites (cerumenomic) that carry valuable biological information has interesting implications for veterinary medicine. Nonetheless, up to now, no applications of veterinary cerumenomic assays have been made to identify bovine laminitis. This work aims to develop a veterinary cerumenomic assay for bovine laminitis identification that is non-invasive, robust, accurate, and sensitive to detecting the metabolic disturbances in bovine volatile metabolome. Twenty earwax samples (10 from healthy/control calves and 10 from laminitis calves) were collected from Nellore cattle, followed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) analysis and biomarker selection in two multivariate approaches: semiquantitative (intensity data) and semiqualitative (binary data). Following the analysis, cerumen volatile metabolites were indicated as candidate biomarkers for identifying bovine laminitis by monitoring their intensity or occurrence. In the semiquantitative strategy, the p-cresol presented the highest diagnostic figures of merit (area under the curve: 0.845, sensitivity: 0.700, and specificity: 0.900). Regarding the binary approach, a panel combining eight variables/volatiles, with formamide being the most prominent one, showed an area under the curve, sensitivity, and specificity of 0.97, 0.81, and 0.90, respectively. In summary, this work describes the first veterinary cerumenomic assay for bovine laminitis that indicates new metabolites altered during the inflammatory condition, paving the way for developing laminitis early diagnosis by monitoring the cerumen metabolites.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Ana Luiza Reis R Cunha
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Lurian C David
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Ícaro N Camelo
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Nauyla M Martins
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Felipe S Galvão
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Débora R Mendonça
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Marianna T Venâncio
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Roberta Dias S Cunha
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Alessandro R Costa Filho
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Izadora M Veloso
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Juliano José R Fernandes
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Paulo Henrique Jorge da Cunha
- Escola de Veterinária E Zootecnia (EVZ), Universidade Federal de Goiás (UFG), Rodovia Goiânia - Nova Veneza, Km 8, Campus II - Samambaia, Goiânia, GO, CEP, 74001-970, Brazil
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
2
|
Ashokan M, Rana E, Sneha K, Namith C, Naveen Kumar GS, Azharuddin N, Elango K, Jeyakumar S, Ramesha KP. Metabolomics-a powerful tool in livestock research. Anim Biotechnol 2023; 34:3237-3249. [PMID: 36200897 DOI: 10.1080/10495398.2022.2128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Advancements in the Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) along with recent developments in omics sciences have resulted in a better understanding of molecular mechanisms and pathways associated with the physio-pathological state of the animal. Metabolomics is a post-genomics tool that deals with small molecular metabolites in a given set of time which provides clear information about the status of an organism. Recently many researchers mainly focus their research on metabolomics studies due to its valuable information in the various fields of livestock management and precision dairying. The main aim of the present review is to provide an insight into the current research output from different sources and application of metabolomics in various areas of livestock including nutri-metabolomics, disease diagnosis advancements, reproductive disorders, pharmaco-metabolomics, genomics studies, and dairy production studies. The present review would be helpful in understanding the metabolomics methodologies and use of livestock metabolomics in various areas in a brief way.
Collapse
Affiliation(s)
- M Ashokan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
- Department of Animal Husbandry, Cattle Breeding and Fodder Development, Thiruvarur, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - C Namith
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - G S Naveen Kumar
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - N Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - S Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| |
Collapse
|
3
|
Meng S, Zhang Y, Lv S, Zhang Z, Liu X, Jiang L. Comparison of muscle metabolomics between two Chinese horse breeds. Front Vet Sci 2023; 10:1162953. [PMID: 37215482 PMCID: PMC10196265 DOI: 10.3389/fvets.2023.1162953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
With their enormous muscle mass and athletic ability, horses are well-positioned as model organisms for understanding muscle metabolism. There are two different types of horse breeds-Guanzhong (GZ) horses, an athletic breed with a larger body height (~148.7 cm), and the Ningqiang pony (NQ) horses, a lower height breed generally used for ornamental purposes-both inhabited in the same region of China with obvious differences in muscle content. The main objective of this study was to evaluate the breed-specific mechanisms controlling muscle metabolism. In this study, we observed muscle glycogen, enzyme activities, and LC-MS/MS untargeted metabolomics in the gluteus medius muscle of six, each of GZ and NQ horses, to explore differentiated metabolites that are related to the development of two muscles. As expected, the glycogen content, citrate synthase, and hexokinase activity of muscle were significantly higher in GZ horses. To alleviate the false positive rate, we used both MS1 and MS2 ions for metabolite classification and differential analysis. As a result, a total of 51,535 MS1 and 541 MS2 metabolites were identified, and these metabolites can separate these two groups from each other. Notably, 40% of these metabolites were clustered into lipids and lipid-like molecules. Furthermore, 13 significant metabolites were differentially detected between GZ and NQ horses (fold change [FC] value ≥ 2, variable important in projection value ≥1, and Q value ≤ 0.05). They are primarily clustered into glutathione metabolism (GSH, p = 0.01), taurine, and hypotaurine metabolism (p < 0.05) pathways. Seven of the 13 metabolites were also found in thoroughbred racing horses, suggesting that metabolites related to antioxidants, amino acids, and lipids played a key role in the development of skeleton muscle in horses. Those metabolites related to muscle development shed a light on racing horses' routine maintenance and improvement of athletic performance.
Collapse
Affiliation(s)
- Sihan Meng
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shipeng Lv
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zhengkai Zhang
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
4
|
Duarte PDC, Ribeiro RM, Machado ART, Faleiros RR, Pimenta LPS, Filho JDDS. Metabolic Profile Changes in Mangalarga Marchador Horses Subjected to A Hypercaloric Diet Evaluated by Proton NMR Spectroscopy. J Equine Vet Sci 2021; 103:103684. [PMID: 34281651 DOI: 10.1016/j.jevs.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
The incidence of equine metabolic syndrome, a condition that results in endocrinopathic laminitis, is increasing worldwide. Although it is well known that the development of this syndrome depends on imbalances in energy metabolism and genetic traits, its pathophysiology remains unclear. Hydrogen nuclear magnetic resonance (1H NMR) is a powerful tool used to compare metabolic profiles and to discriminate metabolites in living beings. The aim was to apply this technology to detect blood biomarkers candidates in horses that were previously demonstrated to developed metabolic changes when subjected to induced obesity. Nine Mangalarga Marchador horses received a hypercaloric diet for 5 months and serum metabolomic analysis was performed before, during, and after the diet period. The 1H NMR results were subjected to multivariate analysis and NMR analysis allowed to identify six compounds (alanine, threonine, choline, α-glucose, β-glucose, and creatinine), and observe the increasing choline level over the assessment period in four animals. A hypercaloric diet altered the metabolic profile of horses, with an individual bias in the time at which these changes occurred. This study is the first to describe metabolomic compounds in Mangalarga Marchador horses subjected to a hypercaloric diet rich in non-structural carbohydrates.
Collapse
Affiliation(s)
- Patricia de Castro Duarte
- Equinova Research Group, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | - Rafael Resende Faleiros
- Equinova Research Group, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - José Dias de Souza Filho
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Ambrosini YM, Neuber S, Borcherding D, Seo YJ, Segarra S, Glanemann B, Garden OA, Müller U, Adam MG, Dang V, Borts D, Atherly T, Willette AA, Jergens A, Mochel JP, Allenspach K. Treatment With Hydrolyzed Diet Supplemented With Prebiotics and Glycosaminoglycans Alters Lipid Metabolism in Canine Inflammatory Bowel Disease. Front Vet Sci 2020; 7:451. [PMID: 32851029 PMCID: PMC7406657 DOI: 10.3389/fvets.2020.00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Canine inflammatory bowel disease (IBD) is a chronic, immunologically mediated intestinal disorder, resulting from the complex interaction of genetic, environmental and immune factors. Hydrolyzed diets are used in dogs with food-responsive diarrhea (FRD) to reduce adverse responses to immunostimulatory proteins. Prebiotics (PRBs) and glycosaminoglycans (GAGs) have previously been demonstrated to show anti-inflammatory activity in the intestinal mucosa. Notably, hydrolyzed diets combined with the administration of PRBs and GAGs offer a promising approach for the treatment of canine IBD. Our aim was to investigate the effects of hydrolyzed diet and GAG+PRB co-treatment on the serum metabolomic profile of IBD dogs. Dogs with IBD randomly received either hydrolyzed diet supplemented with GAGs and PRBs (treatment 1) or hydrolyzed diet alone (treatment 2) for 10 weeks. A targeted metabolomics approach using mass spectrometry was performed to quantify changes in the serum metabolome before and after treatment and between treatment 1 and 2. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA) and univariate statistics were used to identify differences between the treatment groups. PCA, PLS-DA, and HCA showed a clear clustering of IBD dogs before and after hydrolyzed diet, indicating that the treatment impacted the serum metabolome. Univariate analysis revealed that most of the altered metabolites were involved in lipid metabolism. The most impacted lipid classes were components of cell membranes, including glycerophospholipids, sphingolipids, and di- and triglycerides. In addition, changes in serum metabolites after GAG+PRB co-treatment suggested a possible additional beneficial effect on the lipid metabolism in IBD dogs. In conclusion, the present study showed a significant increase in metabolites that protect gut cell membrane integrity in response to hydrolyzed diet alone or in combination with GAG+PRB co-treatment. Administration of such treatment over 70 days improved selected serum biomarkers of canine IBD, possibly indicating improved intestinal membrane integrity.
Collapse
Affiliation(s)
- Yoko M. Ambrosini
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | - Dana Borcherding
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Yeon-Jung Seo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | | | - Oliver A. Garden
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania College of Veterinary Medicine, Philadelphia, PA, United States
| | - Udo Müller
- Biocrates Life Sciences AG, Innsbruck, Austria
| | | | - Viet Dang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Borts
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Auriel A. Willette
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, College of Human Sciences, Iowa State University, Ames, IA, United States
| | - Albert Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Urinary metabolomics fingerprinting around parturition identifies metabolites that differentiate lame dairy cows from healthy ones. Animal 2020; 14:2138-2149. [PMID: 32498732 DOI: 10.1017/s1751731120001172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lameness is a very important disorder of periparturient dairy cows with implications on milk production and composition as well as with consequences on reproductive performance. The aetiology of lameness is not clear although there have been various hypotheses suggested over the years. The objective of this study was to metabotype the urine of dairy cows prior to, during and after the onset of lameness by evaluating at weeks -8, -4 pre-calving, the week of lameness diagnosis, and +4 and +8 weeks post-calving. We used a metabolomics approach to analyse urine samples collected from dairy cows around calving (6 cows with lameness v. 20 healthy control cows). A total of 153 metabolites were identified and quantified using an in-house MS library and classified into 6 groups including: 11 amino acids (AAs), 39 acylcarnitines (ACs), 3 biogenic amines (BAs), 84 glycerophospholipids, 15 sphingolipids and hexose. A total of 23, 36, 40, 23 and 49 metabolites were observed to be significantly different between the lame and healthy cows at -8 and -4 weeks pre-calving, week of lameness diagnosis as well as at +4 and +8 weeks post-calving, respectively. It should be noted that most of the identified metabolites were elevated; however, a few of them were also lower in lame cows. Overall, ACs and glycerophospholipids, specifically phosphatidylcholines (PCs), were the metabolite groups displaying the strongest differences in the urine of pre-lame and lame cows. Lysophosphatidylcholines (LysoPCs), although to a lesser extent than PCs, were altered at all time points. Alterations in urinary AA concentrations were also observed during the current study for four time points. During the pre-calving period, there was an observed elevation of arginine (-8 week), tyrosine (-8 week) and aspartate (-4 week), as well as a depression of urinary glutamate (-4 weeks). In the current study, it was additionally observed that concentrations of several sphingomyelins and one BA were altered in pre-lame and lame cows. Symmetric dimethylarginine was elevated at both -8 weeks pre-calving and the week of lameness diagnosis. Data showed that urinary fingerprinting might be a reliable methodology to be used in the future to differentiate lame cows from healthy ones.
Collapse
|
7
|
Beachler TM, Gracz HS, Morgan DR, Bembenek Bailey SA, Borst L, Ellis KE, Von Dollen KA, Lyle SK, Nebel A, Andrews NC, Koipalli J, Gadsby JE, Bailey CS. Plasma metabolomic profiling of healthy pregnant mares and mares with experimentally induced placentitis. Equine Vet J 2020; 53:85-93. [PMID: 32187705 DOI: 10.1111/evj.13262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Metabolomics may represent an avenue for diagnosis of equine ascending placentitis. OBJECTIVES To characterise the plasma metabolomic profile in healthy mares and mares with induced ascending placentitis, with the goal of identifying metabolites with potential clinical value for early diagnosis of placentitis. STUDY DESIGN Controlled in vivo experiment. METHODS Placentitis was induced in 10 late-term pregnant pony mares via Streptococcal equi subsp. zooepidemicus inoculation in five mares between days 285 and 290 of gestation, while five mares served as healthy controls. Repeated ultrasound examinations and jugular venipuncture were performed to obtain combined thickness of the uterus and placenta (CTUP) and plasma for NMR spectroscopy. Mares with increased CTUP were diagnosed with placentitis and treated in accordance with published therapeutic recommendations. NMR metabolomic analysis was performed to identify and quantify plasma metabolites at each time point. Concentrations were compared using ANOVA with repeated-measures and PLS-DA analysis. RESULTS Four hours post-inoculation, a significant increase was detected in the metabolites alanine, phenylalanine, histidine, pyruvate, citrate, glucose, creatine, glycolate, lactate and 3-hydroxyisobutyrate that returned to baseline by 12 hours. On day 4, a significant reduction in the metabolites alanine, phenylalanine, histidine, tyrosine, pyruvate, citrate, glycolate, lactate and dimethylsulfone was seen in infected mares compared with controls. MAIN LIMITATIONS There were small numbers of mares within groups. In addition, this work compares healthy animals with animals treated with multimodal therapeutics following diagnosis of placentitis without an untreated cohort. CONCLUSIONS Two phases of metabolite changes were noted after experimental infection: An immediate rise in metabolite concentration involved in energy, nitrogen, hydrogen and oxygen metabolism within 4 hours after inoculation that was followed by a decrease in metabolite concentrations involved in energy and nitrogen metabolism at 4 days, coinciding with ultrasonographic diagnosis of placentitis.
Collapse
Affiliation(s)
- Theresa M Beachler
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Hanna S Gracz
- Department of Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - David R Morgan
- Department of Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | - Luke Borst
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Katey E Ellis
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Karen A Von Dollen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sara K Lyle
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Amber Nebel
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natalie C Andrews
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Joanna Koipalli
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - John E Gadsby
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Christopher S Bailey
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Stokes SM, Bertin FR, Stefanovski D, Poulsen L, Belknap JK, Medina-Torres CE, Pollitt CC, van Eps AW. The effect of continuous digital hypothermia on lamellar energy metabolism and perfusion during laminitis development in two experimental models. Equine Vet J 2020; 52:585-592. [PMID: 31793047 DOI: 10.1111/evj.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/22/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Continuous digital hypothermia (CDH) prevents lamellar failure in the euglycaemic hyperinsulinaemic clamp (EHC) and oligofructose (OF) laminitis models, but the mechanisms remain unclear. OBJECTIVES To evaluate the effects of CDH on lamellar energy metabolism and perfusion in healthy horses and during EHC and OF laminitis models. STUDY DESIGN In vivo experiment. METHODS Archived samples were used from Standardbred geldings that received no treatment (CON) (n = 8) or underwent EHC (n = 8) or OF (n = 6) laminitis models. Both forelimbs were instrumented with a lamellar microdialysis system, and one forelimb was cooled (CDH) with the other maintained at ambient temperature (AMB). Microdialysate was collected every 6 hours and analysed for glucose, lactate and pyruvate concentrations and lactate to pyruvate ratio (L:P). Microdialysis urea clearance was used to estimate lamellar tissue perfusion. Data were analysed using a mixed-effects linear regression model. RESULTS Glucose did not change in CDH limbs relative to AMB in CON (P = .3), EHC (P = .3) or OF (P = .6) groups. There was a decrease in lactate (P < .001) and pyruvate (P < .01) in CDH limbs relative to AMB in all groups. L:P decreased in CON CDH relative to CON AMB (P < .001) but was not different in EHC (P = .6) and OF (P = .07) groups. Urea clearance decreased in CDH limbs relative to AMB in CON (P = .002) and EHC (P < .001), but not in OF (P = .4). MAIN LIMITATIONS The EHC model may not mimic natural endocrinopathic laminitis. CONCLUSIONS CDH caused a marked decrease in lamellar glucose metabolism (CON, EHC and OF) and perfusion (CON and EHC) without affecting lamellar glucose concentration. Although cellular energy failure is not a primary pathophysiological event in EHC and OF laminitis models, CDH may act by limiting energy supply to pathologic cellular processes whilst preserving those critical to lamellar homoeostasis.
Collapse
Affiliation(s)
- Simon M Stokes
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Francois-Rene Bertin
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Darko Stefanovski
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Lea Poulsen
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - James K Belknap
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Carlos E Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Christopher C Pollitt
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Andrew W van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
9
|
Sheats MK. A Comparative Review of Equine SIRS, Sepsis, and Neutrophils. Front Vet Sci 2019; 6:69. [PMID: 30931316 PMCID: PMC6424004 DOI: 10.3389/fvets.2019.00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The most recent definition of sepsis in human medicine can be summarized as organ dysfunction caused by a dysregulated host response to infection. In equine medicine, although no consensus definition is available, sepsis is commonly described as a dysregulated host systemic inflammatory response to infection. Defense against host infection is the primary role of innate immune cells known as neutrophils. Neutrophils also contribute to host injury during sepsis, making them important potential targets for sepsis prevention, diagnosis, and treatment. This review will present both historical and updated perspectives on the systemic inflammatory response (SIRS) and sepsis; it will also discuss the impact of sepsis on neutrophils, and the impact of neutrophils during sepsis. Future identification of clinically relevant sepsis diagnosis and therapy depends on a more thorough understanding of disease pathogenesis across species. To gain this understanding, there is a critical need for research that utilizes a clearly defined, and consistently applied, classification system for patients diagnosed with, and at risk of developing, sepsis.
Collapse
Affiliation(s)
- M. Katie Sheats
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
10
|
Beachler T, Gracz H, Long NM, Borst L, Morgan D, Nebel A, Andrews N, Koipillai J, Frable S, Bembenek Bailey S, Ellis K, Von Dollen K, Lyle S, Gadsby J, Bailey CS. Allantoic Metabolites, Progesterone, and Estradiol-17β Remain Unchanged After Infection in an Experimental Model of Equine Ascending Placentitis. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
McGarrity S, Anuforo Ó, Halldórsson H, Bergmann A, Halldórsson S, Palsson S, Henriksen HH, Johansson PI, Rolfsson Ó. Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification. Sci Rep 2018; 8:6811. [PMID: 29717213 PMCID: PMC5931560 DOI: 10.1038/s41598-018-25015-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction contributes to sepsis outcome. Metabolic phenotypes associated with endothelial dysfunction are not well characterised in part due to difficulties in assessing endothelial metabolism in situ. Here, we describe the construction of iEC2812, a genome scale metabolic reconstruction of endothelial cells and its application to describe metabolic changes that occur following endothelial dysfunction. Metabolic gene expression analysis of three endothelial subtypes using iEC2812 suggested their similar metabolism in culture. To mimic endothelial dysfunction, an in vitro sepsis endothelial cell culture model was established and the metabotypes associated with increased endothelial permeability and glycocalyx loss after inflammatory stimuli were quantitatively defined through metabolomics. These data and transcriptomic data were then used to parametrize iEC2812 and investigate the metabotypes of endothelial dysfunction. Glycan production and increased fatty acid metabolism accompany increased glycocalyx shedding and endothelial permeability after inflammatory stimulation. iEC2812 was then used to analyse sepsis patient plasma metabolome profiles and predict changes to endothelial derived biomarkers. These analyses revealed increased changes in glycan metabolism in sepsis non-survivors corresponding to metabolism of endothelial dysfunction in culture. The results show concordance between endothelial health and sepsis survival in particular between endothelial cell metabolism and the plasma metabolome in patients with sepsis.
Collapse
Affiliation(s)
- Sarah McGarrity
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Ósk Anuforo
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Haraldur Halldórsson
- Medical Department, University of Iceland, Sturlugata 8, Reykjavik, Iceland
- Landspitali, Læknagarður, Hringbraut, Reykjavik, Iceland
| | - Andreas Bergmann
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | | | - Sirus Palsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | | | - Pär Ingemar Johansson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
- Rigshospitalet, Blegdamsvej 9, 2100, Kobenhavn O, Denmark
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland.
- Medical Department, University of Iceland, Sturlugata 8, Reykjavik, Iceland.
| |
Collapse
|
12
|
Sun YC, Wu S, Du NN, Song Y, Xu W. High-throughput metabolomics enables metabolite biomarkers and metabolic mechanism discovery of fish in response to alkalinity stress. RSC Adv 2018; 8:14983-14990. [PMID: 35541358 PMCID: PMC9079986 DOI: 10.1039/c8ra01317a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/04/2018] [Indexed: 11/21/2022] Open
Abstract
High throughput mass spectrometry (MS)-based metabolomics is a popular platform for small molecule metabolites analyses that are widely used for detecting biomarkers in the research field of environmental assessment. Crucian carp (Carassius carassius, CC) is an economically and ecologically important fish in Asia. It can adapt to extremely high alkalinity, providing us with valuable material to understand the adaptation mechanism for extreme environmental stress. However, the information on the metabolite biomarkers and metabolic mechanisms of CC exposed to alkaline stress is not entirely clear. We applied high-throughput UPLC-Q-TOF/MS combined with chemometrics to identify changes in the metabolome of CC exposed to different concentrations of alkalinity for long term effects. Metabolic differences among alkalinity-treated groups were identified by multivariate statistical analysis. Further, 7 differential metabolites were found after exposure to alkaline conditions. In total, 23 metabolic pathways of these differential metabolites were significantly affected. Alkalinity exposure resulted in widespread change in metabolic profiles in the plasma with disruptions in the phenylalanine metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, tyrosine metabolism, etc. The integrated pathway analysis of the associated metabolites showed that tRNA charging, l-cysteine degradation II, superpathway of methionine degradation, l-serine degradation, tyrosine biosynthesis IV, etc. appear to be the most significantly represented functional categories. Overall, this study demonstrated that metabolic changes in CC played a role in adaptation to the highly alkaline environmental stress. High throughput mass spectrometry (MS)-based metabolomics is a popular platform for small molecule metabolites analyses that are widely used for detecting biomarkers in the research field of environmental assessment.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| | - Ning-ning Du
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| | - Yi Song
- Chinese Academy of Fishery Sciences
- Beijing 100141
- P. R. China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| |
Collapse
|
13
|
Peoc’h K, Nuzzo A, Guedj K, Paugam C, Corcos O. Diagnosis biomarkers in acute intestinal ischemic injury: so close, yet so far. ACTA ACUST UNITED AC 2017; 56:373-385. [DOI: 10.1515/cclm-2017-0291] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Abstract
Acute intestinal ischemic injury (i3) is a life-threatening condition with disastrous prognosis, which is currently difficult to diagnose at the early stages of the disease; a rapid diagnosis is mandatory to avoid irreversible ischemia, extensive bowel resection, sepsis and death. The overlapping protein expression of liver and gut related to the complex physiopathology of the disease, the heterogeneity of the disease and its relative rarity could explain the lack of a useful early biochemical marker of i3. Apart from non-specific biological markers of thrombosis, hypoxia inflammation, and infection, several more specific biomarkers in relation with the gut barrier dysfunction, the villi injury and the enterocyte mass have been used in the diagnosis of acute i3. It includes particularly D-lactate, intestinal fatty acid-binding protein (FABP) and citrulline. Herein, we will discuss leading publications concerning these historical markers that point out the main limitations reagrding their use in routine clinical practice. We will also introduce the first and limited results arising from omic studies, underlying the remaining effort that needs to be done in the field of acute i3 biological diagnosis, which remains a challenge.
Collapse
Affiliation(s)
- Katell Peoc’h
- Biochimie Clinique, Hôpital Beaujon , Université Paris Diderot, UFR de Médecine Xavier Bichat and APHP, HUPNVS, DHU Unity , Clichy , France
- INSERM, UMRs 1149, CRI , Université Paris Diderot , Paris , France , Phone: +33 (0)1 40 87 54 36
| | - Alexandre Nuzzo
- SURVI, Hôpital Beaujon, APHP, HUPNVS, DHU Unity , Clichy , France
- Gastroenterologie, Hôpital Beaujon, APHP, HUPNVS , Clichy , France
| | - Kevin Guedj
- SURVI, Hôpital Beaujon, APHP, HUPNVS, DHU Unity , Clichy , France
- INSERM, UMRs 1148, LVTS , Paris , France
| | - Catherine Paugam
- Anesthésie Réanimation, Hôpital Beaujon , Université Paris Diderot, UFR de Médecine Xavier Bichat and APHP, HUPNVS , Clichy , France
| | - Olivier Corcos
- SURVI, Hôpital Beaujon, APHP, HUPNVS, DHU Unity , Clichy , France
- Gastroenterologie, Hôpital Beaujon, APHP, HUPNVS , Clichy , France
- INSERM, UMRs 1148, LVTS , Paris , France
| |
Collapse
|
14
|
Liu Z, Yin P, Amathieu R, Savarin P, Xu G. Application of LC-MS-based metabolomics method in differentiating septic survivors from non-survivors. Anal Bioanal Chem 2016; 408:7641-7649. [PMID: 27614981 DOI: 10.1007/s00216-016-9845-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/27/2016] [Indexed: 01/26/2023]
Abstract
Septic shock is the most severe form of sepsis, which is still one of the leading causes of death in the intensive care unit (ICU). Even though early prognosis and diagnosis are known to be indispensable for reaching an optimistic outcome, pathogenic complexities and the lack of specific treatment make it difficult to predict the outcome individually. In the present study, serum samples from surviving and non-surviving septic shock patients were drawn before clinical intervention at admission. Metabolic profiles of all the samples were analyzed by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. One thousand four hundred nineteen peaks in positive mode and 1878 peaks in negative mode were retained with their relative standard deviation (RSD) below 30 %, in which 187 metabolites were initially identified by retention time and database in the light of the exact molecular mass. Differences between samples from the survivors and the non-survivors were investigated using multivariate and univariate analysis. Finally, 43 significantly varied metabolites were found in the comparison between survivors and non-survivors. Concretely, metabolites in the tricarboxylic acid (TCA) cycle, amino acids, and several energy metabolism-related metabolites were up-regulated in the non-survivors, whereas those in the urea cycle and fatty acids were generally down-regulated. Metabolites such as lysine, alanine, and methionine did not present significant changes in the comparison. Six metabolites were further defined as primary discriminators differentiating the survivors from the non-survivors at the early stage of septic shock. Our findings reveal that LC-MS-based metabolomics is a useful tool for studying septic shock. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Zhicheng Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.,Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Université Paris 13, Rue de Chablis 1, 93000, Bobigny, France
| | - Peiyuan Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Roland Amathieu
- Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Université Paris 13, Rue de Chablis 1, 93000, Bobigny, France.,Intensive Care Unit, Jean Verdier Teaching Hospital, AP-HP, 93140, Bondy, France
| | - Philippe Savarin
- Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Université Paris 13, Rue de Chablis 1, 93000, Bobigny, France
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
15
|
Laskoski LM, Locatelli-Dittrich R, Sousa RS, Brum JS, Cristo TG, Montiani-Ferreira F, Beltrame OC, Valadão CA. Laminar lesions in horses with systemic oxidative stress, committed by experimentally induced or naturally occurring gastrointestinal disorders. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000800003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: Laminitis in horses can be associated with lesions in multiple organs secondary to sepsis. Twenty-one horses suffering from gastrointestinal disorders were used in the experiment; 7 horses with experimentally induced endotoxemia and intestinal ischaemia, and 14 horses suffering from naturally occurring colic syndrome. Tissue samples of lungs, liver, heart, brain, cerebellum and hoof laminar tissue were collected for histopathological and oxidative stress evaluation using nitrotyrosine and superoxide dismutase (SOD2) immunostaining. The horses were divided into two groups: the non-oxidative lesions group (NOLG), with 7 horses showing weak immunostaining in lungs, liver and kidney, and the oxidative lesions group (OLG), with 14 horses showing immunostaining indicating systemic oxidative stress in multiple organs. The horses from OLG showed increase of laminar lesions and SOD2 immunostaining in multiple organs when compared to the horses from the NOLG. No differences were found ln regard to laminar immunostaining by nitrotyrosine and SOD2 between experimental groups. It was concluded that systemic oxidative stress can be associated with the development of laminar lesions, and that the laminar tissue does not respond to oxidative stress with increase of SOD as occurs in other organs.
Collapse
|
16
|
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- David Antcliffe
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK
| | - Anthony C Gordon
- Department of Surgery & Cancer, Charing Cross Hospital / Imperial College London, Section of Anaesthetics, Pain Medicine & Intensive Care, London, UK.
| |
Collapse
|
17
|
Laskoski LM, Dittrich RL, Valadão CAA, Brum JS, Brandão Y, Brito HFV, de Sousa RS. Oxidative stress in hoof laminar tissue of horses with lethal gastrointestinal diseases. Vet Immunol Immunopathol 2016; 171:66-72. [PMID: 26964719 DOI: 10.1016/j.vetimm.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 01/08/2023]
Abstract
Tissue damage caused by oxidative stress is involved in the pathogenesis of several diseases in animals and man, and is believed to play a role in the development of laminitis in horses. The aim of this study was to investigate the oxidative stress associated with laminar lesions in horses with lethal gastrointestinal disorders. Laminar tissue samples of the hoof of 30 horses were used. Tissue samples were divided as follows: six healthy horses (control group-CG), and 24 horses that died after complications of gastrointestinal diseases (group suffering from gastrointestinal disorders-GDG). Superoxide dismutase (SOD2) and nitrotyrosine immunostaining and the severity of laminar lesions were evaluated. Presence of laminar lesions and immunostaining for nitrotyrosine and SOD2 were only evident in horses from the GDG group. Thus, oxidative stress may play a role in the pathogenesis of laminar lesions secondary to gastrointestinal disorders.
Collapse
Affiliation(s)
- Luciane Maria Laskoski
- Graduate School in Veterinary Sciences, Federal University of Paraná (Curitiba campus), Rua dos Funcionários, 1540, Curitiba, Paraná 80035-050, Brazil.
| | - Rosangela Locatelli Dittrich
- Graduate School in Veterinary Sciences, Federal University of Paraná (Curitiba campus), Rua dos Funcionários, 1540, Curitiba, Paraná 80035-050, Brazil.
| | - Carlos Augusto Araújo Valadão
- Graduate School in Veterinary Surgery, São Paulo State University Júlio de Mesquita Filho - UNESP (Jaboticabal campus), Via de Acesso Professor Paulo Donato Castellane, s/n, Jaboticabal, São Paulo 14884-900, Brazil.
| | - Juliana Sperotto Brum
- Graduate School in Veterinary Sciences, Federal University of Paraná (Curitiba campus), Rua dos Funcionários, 1540, Curitiba, Paraná 80035-050, Brazil.
| | - Yara Brandão
- Graduate School in Microbiology, Parasitology and Patology, Federal University of Paraná (Curitiba campus), Avenida Coronel Francisco H. dos Santos, s/n, Curitiba, Paraná 81530-900, Brazil.
| | - Harald Fernando Vicente Brito
- Graduate School in Veterinary Sciences, Federal University of Paraná (Curitiba campus), Rua dos Funcionários, 1540, Curitiba, Paraná 80035-050, Brazil.
| | - Renato Silva de Sousa
- Department of Veterinary Medicine, Federal University of Paraná (Curitiba campus), Rua dos Funcionários, 1540, Curitiba, Paraná 80035-050, Brazil.
| |
Collapse
|
18
|
Liang Q, Liu H, Xing H, Jiang Y, Zhang AH. UPLC-QTOF/MS based metabolomics reveals metabolic alterations associated with severe sepsis. RSC Adv 2016. [DOI: 10.1039/c6ra07514b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Severe sepsis (SS) remains among the leading causes of death in both developed and developing countries.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-Hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
19
|
Medina-Torres CE, van Eps AW, Nielsen LK, Hodson MP. A liquid chromatography-tandem mass spectrometry-based investigation of the lamellar interstitial metabolome in healthy horses and during experimental laminitis induction. Vet J 2015; 206:161-9. [PMID: 26364239 DOI: 10.1016/j.tvjl.2015.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/13/2023]
Abstract
Lamellar bioenergetic failure is thought to contribute to laminitis pathogenesis but current knowledge of lamellar bioenergetic physiology is limited. Metabolomic analysis (MA) can systematically profile multiple metabolites. Applied to lamellar microdialysis samples (dialysate), lamellar bioenergetic changes during laminitis (the laminitis metabolome) can be characterised. The objectives of this study were to develop a technique for targeted MA of lamellar and skin dialysates in normal horses, and to compare the lamellar and plasma metabolomic profiles of normal horses with those from horses developing experimentally induced laminitis. Archived lamellar and skin dialysates (n = 7) and tissues (n = 6) from normal horses, and lamellar dialysate and plasma from horses given either 10 g/kg oligofructose (treatment group, OFT; n = 4) or sham (control group, CON; n = 4) were analysed. The concentrations of 44 intermediates of central carbon metabolism (CCM) were determined using liquid chromatography-tandem mass spectrometry. Data were analysed using multivariate (MVA) and univariate (UVA) analysis methods. The plasma metabolome appeared to be more variable than the lamellar metabolome by MVA, driven by malate, pyruvate, aconitate and glycolate. In lamellar dialysate, these metabolites decreased in OFT horses at the later time points. Plasma malate was markedly increased after 6 h in OFT horses. Plasma malate concentrations between OFT and CON at this time point were significantly different by UVA. MA of lamellar CCM was capable of differentiating horses developing experimental laminitis from controls. Lamellar malate, pyruvate, aconitate and glycolate, and plasma malate alone were identified as the source of differentiation between OFT and CON groups. These results highlighted clear discriminators between OFT and CON horses, suggesting that changes in energy metabolism occur locally in the lamellar tissue during laminitis development. The biological significance of these alterations requires further investigation.
Collapse
Affiliation(s)
- C E Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia.
| | - A W van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia
| | - L K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - M P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Metabolomics Australia - Queensland Node, AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
20
|
Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, Suchodolski JS. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 2015; 6:33-47. [PMID: 25531678 PMCID: PMC4615558 DOI: 10.1080/19490976.2014.997612] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy.
Collapse
Key Words
- 16 S rRNA, 16 S ribosomal RNA
- ANOSIM, analysis of similarities
- CIBDAI, canine IBD activity index
- FDR, false discovery rate
- Faecalibacterium
- GC-TOF/MS, gas chromatography coupled with time-of-flight mass spectrometry
- GI, gastrointestinal
- IBD
- IBD, idiopathic inflammatory bowel disease
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LEfSe, linear discriminant analysis (LDA) effect size
- PCA, principal component analysis
- PCoA, principal coordinates analysis
- PICRUSt, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
- ROC, receiver operating characteristic
- dog
- dysbiosis
- feces
- metabolomics
- microbiome
Collapse
Affiliation(s)
- Yasushi Minamoto
- Gastrointestinal Laboratory; Department of Small Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station, TX USA
| | - Cristiane C Otoni
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Iowa State University; Ames, IA USA
| | - Samantha M Steelman
- Department of Veterinary Integrative Biosciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station, TX USA
| | - Olga Büyükleblebici
- Department of Biochemistry; College of Veterinary Medicine; Aksaray University; Aksaray, Turkey
| | - Jörg M Steiner
- Gastrointestinal Laboratory; Department of Small Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station, TX USA
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Iowa State University; Ames, IA USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory; Department of Small Animal Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station, TX USA,Correspondence to: Jan S. Suchodolski;
| |
Collapse
|
21
|
Liang Q, Liu H, Zhang T, Jiang Y, Xing H, Zhang AH. Potential urine biomarkers from a high throughput metabolomics study of severe sepsis in a large Asian cohort. RSC Adv 2015. [DOI: 10.1039/c5ra19875e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-targeted mass spectrometry was used to characterize peripheral biomarkers associated with the urine metabolome in severe sepsis (SS) patients. This is an efficient and convenient tool for diagnosing and screening of SS in a high-risk population.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Tianyu Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|