1
|
Lavajoo Bolgouri F, Falahatkar B, Perelló-Amorós M, Moshayedi F, Efatpanah I, Gutiérrez J. The Pattern of Gene Expression ( Igf Family, Muscle Growth Regulatory Factors, and Osteogenesis-Related Genes) Involved in the Growth of Skeletal Muscle in Pikeperch ( Sander lucioperca) During Ontogenesis. Animals (Basel) 2024; 14:3089. [PMID: 39518814 PMCID: PMC11545179 DOI: 10.3390/ani14213089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The pikeperch (Sander lucioperca) is an economically important freshwater fish and a valuable food with high market acceptance. It is undergoing important changes in growth and regulatory metabolism during the ontogeny. Hence, the current study aims to investigate the mRNA expression of the growth hormone (gh)/insulin-like growth factor (igf) axis (ghr, igfI, igfbp, igfr), muscle regulatory factors (pax7, myf5, myod, myogenin, mrf, mymk, mstn), and osteogenesis-related genes (colla1a, fib1a, on, op, ostn) from hatching through day 40th post-hatching (DPH). The average total length (TL) of larvae measured at hatching was 3.6 ± 0.4 mm (67 degree days), and at the end of the experiment (40 DPH, 777 degree days), it was 27.1 ± 1.1 mm. The results showed three phases of gene expression in day 0 (egg), larval, and juvenile stages of pikeperch, which can be a progression or transition from the initial state toward the juvenile state. The expression pattern of myf5, mymk, and fib1a genes showed the highest value at day 0. The growth hormone receptor gene (ghr) and igfbp5 were raised to 1 DPH, whereas increased expression of igfI, igfII, igf1bp4, igf1rb, myod2, and mrf4 was detected at 14 DPH. The myod1, pax7, op, ostc, on, igf1ra, and col1a1a genes were highly expressed at 21 DPH and juvenile stages. According to the PLS-DA model, the most relevant VIPs are myf5 and mymk as best markers of earlier stages and igf1ra, ostc, pax7, and ghr as markers of later stages of ontogeny. Results from this study suggest that basal metabolism, growth of body cells and muscles, and bone proliferation and development can be regulated by the dynamic changes in gene expression patterns in this species. The identified genes will help to understand the basic biological process of pikeperch larvae and development, which is very important in pikeperch farming.
Collapse
Affiliation(s)
- Fatemeh Lavajoo Bolgouri
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, 1144, Guilan, Iran; (F.L.B.); (I.E.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (F.M.)
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, 1144, Guilan, Iran; (F.L.B.); (I.E.)
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (F.M.)
| | - Fatemeh Moshayedi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (F.M.)
| | - Iraj Efatpanah
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, 1144, Guilan, Iran; (F.L.B.); (I.E.)
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (F.M.)
| |
Collapse
|
2
|
Pax3 Hypomorphs Reveal Hidden Pax7 Functional Genetic Compensation in Utero. J Dev Biol 2022; 10:jdb10020019. [PMID: 35645295 PMCID: PMC9149870 DOI: 10.3390/jdb10020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 01/14/2023] Open
Abstract
Pax3 and Pax7 transcription factors are paralogs within the Pax gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by Pax7 systemic deletion but systemic Pax3 deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and in utero lethality by E14. However, we previously demonstrated that Pax3 hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null Pax3 allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog Pax7. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted Pax7 both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one Pax7 allele resulted in partial outflow tract defects, and complete loss of Pax7 resulted in full penetrance outflow tract defects and in utero lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. Pax7Cre lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% Pax3 hypomorphs. Finally, genetic cell ablation of Pax7Cre-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.
Collapse
|
3
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Florkowska A, Meszka I, Zawada M, Legutko D, Proszynski TJ, Janczyk-Ilach K, Streminska W, Ciemerych MA, Grabowska I. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Res Ther 2020; 11:238. [PMID: 32552916 PMCID: PMC7301568 DOI: 10.1186/s13287-020-01742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo. For this reason, we used teratomas to study early and advanced stages of in vivo ESC myogenic differentiation and the role of Pax7 in this process. Pax7 transcription factor plays a crucial role in the formation and differentiation of skeletal muscle precursor cells during embryonic development. It controls the expression of other myogenic regulators and also acts as an anti-apoptotic factor. It is also involved in the formation and maintenance of satellite cell population. Methods In vivo approach we used involved generation and analysis of pluripotent stem cell-derived teratomas. Such model allows to analyze early and also terminal stages of tissue differentiation, for example, terminal stages of myogenesis, including the formation of innervated and vascularized mature myofibers. Results We determined how the lack of Pax7 function affects the generation of different myofiber types. In Pax7−/− teratomas, the skeletal muscle tissue occupied significantly smaller area, as compared to Pax7+/+ ones. The proportion of myofibers expressing Myh3 and Myh2b did not differ between Pax7+/+ and Pax7−/− teratomas. However, the area of Myh7 and Myh2a myofibers was significantly lower in Pax7−/− ones. Molecular characteristic of skeletal muscles revealed that the levels of mRNAs coding Myh isoforms were significantly lower in Pax7−/− teratomas. The level of mRNAs encoding Pax3 was significantly higher, while the expression of Nfix, Eno3, Mck, Mef2a, and Itga7 was significantly lower in Pax7−/− teratomas, as compared to Pax7+/+ ones. We proved that the number of satellite cells in Pax7−/− teratomas was significantly reduced. Finally, analysis of neuromuscular junction localization in samples prepared with the iDISCO method confirmed that the organization of neuromuscular junctions in Pax7−/− teratomas was impaired. Conclusions Pax7−/− ESCs differentiate in vivo to embryonic myoblasts more readily than Pax7+/+ cells. In the absence of functional Pax7, initiation of myogenic differentiation is facilitated, and as a result, the expression of mesoderm embryonic myoblast markers is upregulated. However, in the absence of functional Pax7 neuromuscular junctions, formation is abnormal, what results in lower differentiation potential of Pax7−/− ESCs during advanced stages of myogenesis.
Collapse
Affiliation(s)
- Anita Florkowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Igor Meszka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Zawada
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Diana Legutko
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Proszynski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Present Address: Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
6
|
Schroeder M, Jakovcevski M, Polacheck T, Lebow M, Drori Y, Engel M, Ben-Dor S, Chen A. A Methyl-Balanced Diet Prevents CRF-Induced Prenatal Stress-Triggered Predisposition to Binge Eating-like Phenotype. Cell Metab 2017; 25:1269-1281.e6. [PMID: 28576418 DOI: 10.1016/j.cmet.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/30/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Binge eating (BE) is a common aberrant form of eating behavior, characterized by overconsumption of food in a brief period of time. Recurrent episodes of BE constitute the BE disorder, which mostly affects females and is associated with early-life adversities. Here, we show that corticotropin releasing factor (CRF)-induced prenatal stress (PNS) in late gestation predisposes female offspring to BE-like behavior that coincides with hypomethylation of hypothalamic miR-1a and downstream dysregulation of the melanocortin system through Pax7/Pax3. Moreover, exposing the offspring to a methyl-balanced diet during adolescence prevents the dysregulation and predisposition from being triggered. We demonstrate that gestational programming, per se, will not lead to BE-like behavior, but pre-existing alterations due to prenatal programming are revealed only when challenged during adolescence. We provide experimental evidence for long-term epigenetic abnormalities stemming from PNS in predisposing female offspring to BE disorder as well as a potential non-invasive prevention strategy.
Collapse
Affiliation(s)
- Mariana Schroeder
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Tamar Polacheck
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maya Lebow
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Yonat Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Mareen Engel
- Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
7
|
Xu Y, Pang W, Lu J, Shan A, Zhang Y. Polypeptide N-Acetylgalactosaminyltransferase 13 Contributes to Neurogenesis via Stabilizing the Mucin-type O-Glycoprotein Podoplanin. J Biol Chem 2016; 291:23477-23488. [PMID: 27629416 DOI: 10.1074/jbc.m116.743955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/28/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by an evolutionarily conserved family of polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). Previously, it was reported that ppGalNAc-T13 is restrictively expressed at a high level in the brain. Here we provide evidence for the critical role of ppGalNAc-T13 in neural differentiation. In detail, we show that the expression of ppGalNAc-T13 was dramatically up-regulated during early neurogenesis in mouse embryonic brains. Similar changes were also observed in cell models of neuronal differentiation by using either primary mouse cortical neural precursor cells or murine embryonal carcinoma P19 cells. Knockout of ppGalNAc-T13 in P19 cells suppressed not only neural induction but also neuronal differentiation. These effects are at least partly mediated by the mucin-type O-glycoprotein podoplanin (PDPN), as knockdown of PDPN led to a similar inhibition of neuronal differentiation and PDPN was significantly reduced at the posttranscriptional level after ppGalNAc-T13 knockout. Further data demonstrate that PDPN acts as a substrate of ppGalNAc-T13 and that the ppGalNAc-T13-mediated O-glycosylation on PDPN is important for its stability. Taken together, this study suggests that ppGalNAc-T13 contributes to neuronal differentiation through glycosylating and stabilizing PDPN, which provides insights into the regulatory roles of O-glycosylation in mammalian neural development.
Collapse
Affiliation(s)
- Yingjiao Xu
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Wenjie Pang
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Jishun Lu
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Aidong Shan
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Czerwinska AM, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, Iwanicka-Nowicka R, Jańczyk-Ilach K, Koblowska M, Ciemerych MA, Grabowska I. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle 2016; 15:2931-2942. [PMID: 27610933 PMCID: PMC5105925 DOI: 10.1080/15384101.2016.1231260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E.
Collapse
Affiliation(s)
- Areta M Czerwinska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Joanna Nowacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Aszer
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Sylwia Gawrzak
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Karolina Archacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Anna Fogtman
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Katarzyna Jańczyk-Ilach
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Marta Koblowska
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Iwona Grabowska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
9
|
Campinho MA, Saraiva J, Florindo C, Power DM. Maternal thyroid hormones are essential for neural development in zebrafish. Mol Endocrinol 2014; 28:1136-49. [PMID: 24877564 DOI: 10.1210/me.2014-1032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.
Collapse
Affiliation(s)
- Marco A Campinho
- Comparative Endocrinology and Integrative Biology Group (M.A.C., J.S., D.M.P.), Centre of Marine Sciences, and Departamento de Ciências Biomédicas e Medicina and Centro de Biomedicina Molecular e Estrutural (C.F.), Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
10
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
11
|
Roeseler DA, Sachdev S, Buckley DM, Joshi T, Wu DK, Xu D, Hannink M, Waters ST. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2. PLoS One 2012; 7:e47366. [PMID: 23144817 PMCID: PMC3493575 DOI: 10.1371/journal.pone.0047366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.
Collapse
Affiliation(s)
- David A. Roeseler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shrikesh Sachdev
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Desire M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Doris K. Wu
- Laboratory of Molecular Biology, NIDCD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
12
|
Olguín HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 2012; 16:1013-25. [PMID: 21615681 PMCID: PMC4365881 DOI: 10.1111/j.1582-4934.2011.01348.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-natal growth and regeneration of skeletal muscle is highly dependent on a population of resident myogenic precursors known as satellite cells. Transcription factors from the Pax gene family, Pax3 and Pax7, are critical for satellite cell biogenesis, survival and potentially self-renewal; however, the underlying molecular mechanisms remain unsolved. This is particularly true in the case of Pax7, which appears to regulate myogenesis at multiple levels. Accordingly, recent data have highlighted the importance of a functional relationship between Pax7 and the MyoD family of muscle regulatory transcription factors during normal muscle formation and disease. Here we will critically review key findings suggesting that Pax7 may play a dual role by promoting resident muscle progenitors to commit to the skeletal muscle lineage while preventing terminal differentiation, thus keeping muscle progenitors poised to differentiate upon environmental cues. In addition, potential regulatory mechanisms for the control of Pax7 activity will be proposed.
Collapse
Affiliation(s)
- Hugo C Olguín
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
13
|
Calvo AC, Manzano R, Atencia-Cibreiro G, Oliván S, Muñoz MJ, Zaragoza P, Cordero-Vázquez P, Esteban-Pérez J, García-Redondo A, Osta R. Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice. PLoS One 2012; 7:e32632. [PMID: 22412900 PMCID: PMC3296719 DOI: 10.1371/journal.pone.0032632] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.
Collapse
Affiliation(s)
- Ana C. Calvo
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Manzano
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriela Atencia-Cibreiro
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Sara Oliván
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María J. Muñoz
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Cordero-Vázquez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Jesús Esteban-Pérez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
14
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
15
|
Charytonowicz E, Matushansky I, Castillo-Martin M, Hricik T, Cordon-Cardo C, Ziman M. Alternate PAX3 and PAX7 C-terminal isoforms in myogenic differentiation and sarcomagenesis. Clin Transl Oncol 2011; 13:194-203. [PMID: 21421465 DOI: 10.1007/s12094-011-0640-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pax3 and Pax7 are closely related genes that are involved in commitment of cells to a myogenic lineage during skeletal muscle development and regeneration. Several Pax3 and Pax7 transcripts are expressed from the genes, generating different isoforms with potentially distinct DNA binding and transactivation properties. The aim of this study was to investigate the implication of Pax3 and Pax7 C-terminal isoforms during myogenic differentiation and tumorigenesis, since fusions involving these genes are commonly associated with alveolar rhabdomyosarcoma (ARMS). METHODS Uncommitted (mouse mesenchymal stem cells, MSCs) and committed (C2C12) myogenic precursor cells were stably transfected with PAX3/FKHR and PAXC7/ FKHR fusion genes. We analysed gene and protein expression comparing the newly generated cells with the parental cells, to determine the functional importance of Pax3 and Pax7 C-terminal isoforms. RESULTS We found that the transcript Pax3c was expressed at low levels in undifferentiated C2C12 and MSCs cells, but its expression levels increased considerably at later stages of differentiation. However, expression levels of Pax3d transcript increased only slightly after differentiation. Pax7 transcripts, present before differentiation in committed C2C12 cells, but absent in uncommitted MSCs, increased noticeably in MSCs after differentiation. We also found that the presence of PAX/FKHR fusions prevented both C2C12 and MSC cells from terminal myogenic differentiation and increased the expression of discrete endogenous Pax3/7 transcripts, in particular Pax3d and Pax7B. CONCLUSIONS Our results suggest that both Pax3 and Pax7 transcripts are required for commitment of cells to the myogenic lineage, with each transcript having a distinct role. More specifically, the Pax3c isoform may be required for terminal myogenic differentiation whereas the Pax3d isoform may be involved in undifferentiated cell maintenance and/or proliferation.
Collapse
Affiliation(s)
- Elizabeth Charytonowicz
- School of Exercise Biomedical and Health Science, Edith Cowan University, Joondalup, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
17
|
Abstract
The Pax7 transcription factor is required for muscle satellite cell biogenesis and specification of the myogenic precursor lineage. Pax7 is expressed in proliferating myoblasts but is rapidly downregulated during differentiation. Here we report that miR-206 and -486 are induced during myoblast differentiation and downregulate Pax7 by directly targeting its 3' untranslated region (UTR). Expression of either of these microRNAs in myoblasts accelerates differentiation, whereas inhibition of these microRNAs causes persistence of Pax7 protein and delays differentiation. A microRNA-resistant form of Pax7 is sufficient to inhibit differentiation. Since both these microRNAs are induced by MyoD and since Pax7 promotes the expression of Id2, an inhibitor of MyoD, our results revealed a bistable switch that exists either in a Pax7-driven myoblast state or a MyoD-driven myotube state.
Collapse
|
18
|
Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K. Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev Biol 2010; 344:158-71. [PMID: 20471971 DOI: 10.1016/j.ydbio.2010.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
All cranial sensory organs and sensory neurons of vertebrates develop from cranial placodes. In chick, amphibians and zebrafish, all placodes originate from a common precursor domain, the pre-placodal region (PPR), marked by the expression of Six1/4 and Eya1/2. However, the PPR has never been described in mammals and the mechanism involved in the formation of PPR is poorly defined. Here, we report the expression of Six1 in the horseshoe-shaped mouse ectoderm surrounding the anterior neural plate in a pattern broadly similar to that of non-mammalian vertebrates. To elucidate the identity of Six1-positive mouse ectoderm, we searched for enhancers responsible for Six1 expression by in vivo enhancer assays. One conserved non-coding sequence, Six1-14, showed specific enhancer activity in the rostral PPR of chick and Xenopus and in the mouse ectoderm. These results strongly suggest the presence of PPR in mouse and that it is conserved in vertebrates. Moreover, we show the importance of the homeodomain protein-binding sites of Six1-14, the Six1 rostral PPR enhancer, for enhancer activity, and that Dlx5, Msx1 and Pax7 are candidate binding factors that regulate the level and area of Six1 expression, and thereby the location of the PPR. Our findings provide critical information and tools to elucidate the molecular mechanism of early sensory development and have implications for the development of sensory precursor/stem cells.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Charytonowicz E, Cordon-Cardo C, Matushansky I, Ziman M. Alveolar rhabdomyosarcoma: Is the cell of origin a mesenchymal stem cell? Cancer Lett 2009; 279:126-36. [DOI: 10.1016/j.canlet.2008.09.039] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 12/26/2022]
|
20
|
Bradford ST, Hiramatsu R, Maddugoda MP, Bernard P, Chaboissier MC, Sinclair A, Schedl A, Harley V, Kanai Y, Koopman P, Wilhelm D. The cerebellin 4 precursor gene is a direct target of SRY and SOX9 in mice. Biol Reprod 2009; 80:1178-88. [PMID: 19211811 DOI: 10.1095/biolreprod.108.071480] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In most mammals, the expression of SRY (sex-determining region on the Y chromosome) initiates the development of testes, and thus determines the sex of the individual. However, despite the pivotal role of SRY, its mechanism of action remains elusive. One important missing piece of the puzzle is the identification of genes regulated by SRY. In this study we used chromatin immunoprecipitation to identify direct SRY target genes. Anti-mouse SRY antibody precipitated a region 7.5 kb upstream of the transcriptional start site of cerebellin 4 precursor (Cbln4), which encodes a secreted protein. Cbln4 is expressed in Sertoli cells in the developing gonad, with a profile mimicking that of the testis-determining gene SRY-box containing gene 9 (Sox9). In transgenic XY mouse embryos with reduced Sox9 expression, Cbln4 expression also was reduced, whereas overexpression of Sox9 in XX mice caused an upregulation of Cbln4 expression. Finally, ectopic upregulation of SRY in vivo resulted in ectopic expression of Cbln4. Our findings suggest that both SRY and SOX9 contribute to the male-specific upregulation of Cbln4 in the developing testis, and they identified a direct in vivo target gene of SRY.
Collapse
Affiliation(s)
- Stephen T Bradford
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blake JA, Thomas M, Thompson JA, White R, Ziman M. Perplexing Pax: From puzzle to paradigm. Dev Dyn 2008; 237:2791-803. [DOI: 10.1002/dvdy.21711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Thompson JA, Zembrzycki A, Mansouri A, Ziman M. Pax7 is requisite for maintenance of a subpopulation of superior collicular neurons and shows a diverging expression pattern to Pax3 during superior collicular development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:62. [PMID: 18513381 PMCID: PMC2430198 DOI: 10.1186/1471-213x-8-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/30/2008] [Indexed: 11/21/2022]
Abstract
Background Pax7 encodes a transcription factor well-established as an important determinant of mesencephalic identity and superior collicular development. Pax7 mutant mice, however, present with no obvious morphological impairments to the superior colliculus. This finding is paradoxical and has been attributed to functional redundancy afforded by its paralogue Pax3. Here we utilise Pax7 mutant mice to investigate the precise role of this important developmental regulator during superior collicular development and neuronal specification/differentiation. We also assess its spatiotemporal relationship with Pax3 during embryonic development. Results Analysis of the superior colliculus of Pax7 mutant and wildtype mice at a variety of developmental timepoints revealed that whilst correct initial specification is maintained, a subpopulation of dorsal mesencephalic neurons is lost at early postnatal stages. Moreover, a comparative analysis of embryonic Pax3 and Pax7 expression profiles indicate that Pax3 expression overlaps extensively with that of Pax7 initially, but their expression domains increasingly diverge as development progresses, coinciding spatiotemporally with neuronal differentiation and maturation of the tissue. Furthermore, Pax3 expression is perturbed within the CNS of embryonic Pax7 mutant mice. Conclusion In summary, these results demonstrate that during superior collicular development, Pax7 is required to maintain a subpopulation of dorsal, mesencephalic neurons and partially regulates, spatiotemporally, Pax3 expression within the CNS. The differential nature of Pax7 and Pax3 with respect to neuronal differentiation may have implications for future stem cell therapies aimed at exploiting their developmental capabilities.
Collapse
Affiliation(s)
- Jennifer A Thompson
- School of Exercise, Biomedical and Health Science, Edith Cowan University, Joondalup Drive, Joondalup, Western Australia 6027, Australia.
| | | | | | | |
Collapse
|