1
|
Bouhy J, Roy N, Dekoninck A, Poot J, Yans J, Deparis O. Unsupervised topological analysis of polarized light microscopy: application to quantitative birefringence imaging. APPLIED OPTICS 2024; 63:1188-1195. [PMID: 38437296 DOI: 10.1364/ao.507553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024]
Abstract
The determination of birefringence (magnitude and axis orientation) of optical materials is of significant interest in various fields. In the case of composite samples, this task becomes complicated and time-consuming; therefore, a partially automated procedure for reconstructing birefringence spatial distribution becomes valuable. Herein, we propose a procedure to reconstruct the spatial distributions of the retardance and optical axis orientation in a geological thin section from sparse quantitative birefringence measurements, using automatic boundary detection on cross-polarized light microscopy images. We examine two particular areas on the selected geological thin section: one that presents a uniaxial crystal with a circular cross-section of its refractive index ellipsoid and the other with grains of varying orientations. The measurement gives the orientation of the grain's optical axis both in and out of the plane of the thin section, which explains the qualitative observations with the cross-polarized light microscope. Future work will connect the measured orientation of the rock thin section with its 3D geological orientation in the field.
Collapse
|
2
|
Schmeltz M, Robinet L, Heu-Thao S, Sintès JM, Teulon C, Ducourthial G, Mahou P, Schanne-Klein MC, Latour G. Noninvasive quantitative assessment of collagen degradation in parchments by polarization-resolved SHG microscopy. SCIENCE ADVANCES 2021; 7:7/29/eabg1090. [PMID: 34272247 PMCID: PMC8284887 DOI: 10.1126/sciadv.abg1090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Nondestructive and noninvasive investigation techniques are highly sought-after to establish the degradation state of historical parchments, which is up to now assessed by thermal techniques that are invasive and destructive. We show that advanced nonlinear optical (NLO) microscopy enables quantitative in situ mapping of parchment degradation at the micrometer scale. We introduce two parameters that are sensitive to different degradation stages: the ratio of two-photon excited fluorescence to second harmonic generation (SHG) signals probes severe degradation, while the anisotropy parameter extracted from polarization-resolved SHG measurements is sensitive to early degradation. This approach is first validated by comparing NLO quantitative parameters to thermal measurements on artificially altered contemporary parchments. We then analyze invaluable parchments from the Middle Ages and show that we can map their conservation state and assess the impact of a restoration process. NLO quantitative microscopy should therefore help to identify parchments most at risk and optimize restoration methods.
Collapse
Affiliation(s)
- Margaux Schmeltz
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Laurianne Robinet
- Centre de Recherche sur la Conservation (CRC), Muséum national d'Histoire naturelle, Ministère de la Culture, CNRS, Paris, France
| | - Sylvie Heu-Thao
- Centre de Recherche sur la Conservation (CRC), Muséum national d'Histoire naturelle, Ministère de la Culture, CNRS, Paris, France
| | - Jean-Marc Sintès
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire Teulon
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Guillaume Ducourthial
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Pierre Mahou
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Gaël Latour
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France.
- Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
3
|
Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage Studies. SUSTAINABILITY 2020. [DOI: 10.3390/su12041409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A range of sophisticated imaging techniques have been developed in recent years that can reveal the surface structure of cultural heritage objects with varying precision. In combination with various spectroscopic methods, they allow the study of the chemical composition of the object; thus, conclusions can be drawn about the origin of the object or its initial components, method, or time of creation, authenticity, mechanisms of degradation, and ways of further conservation. At present, different techniques can be applied to a wide range of cultural heritage objects, such as varnishes, paintings, archaeological objects, binding media, paper-based documents, parchments, marbles, frescoes, as well as various objects made of leather, fabric, stone, ceramics and glass, wood, or metal. One of the main needs in the study of cultural heritage (CH) is the transportability/portability of the research equipment, since many pieces under investigation cannot be moved to the laboratory, either because of their size, inseparability (for example, frescoes on walls, mural paintings in caves), or the threat of damage. In this work, we briefly overview the main optical- and laser-based methods used for the study of cultural heritage objects indicating the scope of their application, and we focus on the applications of non-linear microscopic methods for the investigation of a series of artifacts. We also discuss all the requirements for the construction of a prototype transportable non-linear optical system that will be used as a novel diagnostic tool for in situ studies of CH assets. The availability of such a transportable workstation will significantly improve the study and characterization of various types of CH objects and will constitute an extremely useful diagnostic tool for heritage scientists dealing with a variety of investigations.
Collapse
|
4
|
Abstract
An overview of the optical coherence tomography (OCT) technique is given. Time domain, spectral and sweep source modalities are briefly described, and important physical parameters of the OCT instrument are discussed. Examples of the application of OCT to diagnosis of various art objects such as oil paintings on canvas (imaging of glaze and varnish layers), porcelain, faience, and parchment are presented. Applications to surface profilometry of painting on canvas are also discussed.
Collapse
|