1
|
Lin JC, Liatsis P, Alexandridis P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2059673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jui-Chi Lin
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Paschalis Alexandridis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
2
|
A theoretical study on real time monitoring of single cell mitosis with micro electrical impedance tomography. Biomed Microdevices 2019; 21:102. [PMID: 31768642 DOI: 10.1007/s10544-019-0452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Real time monitoring of cell division, mitosis, at the single cell level, has value for many biomedical applications; such as developing optimal cancer treatments that target the cell division process. The goal of this theoretical study is to explore the feasibility of using Micro Electrical Impedance Tomography (MEIT) for real time monitoring of mitosis in a single cell, through imaging. MEIT employs a micro (single cell) scale electrode cage with electrodes placed around the cell. The electrodes deliver subsensory current and the consequential voltages on the electrodes are measured. An inverse image reconstruction algorithm uses the electric data from the electrodes to generate a map of electrical conductivity distribution in the chamber, which is the image. EIT is a well-known medical imaging technology that is simple to use but lacks good resolution. Therefore, it is not a-priori obvious that EIT has sufficient resolution to monitor single cell mitosis. To accomplish the goal of this study we have developed a mathematical model of MEIT of single cell mitosis, in which an in silico experiment provided the data for the MEIT image reconstruction. This theoretical study shows that MEIT can detect the outlines of the dividing cell during the various stages of mitosis (metaphase, anaphase and telophase) and, therefore, has potential as a technology for real time monitoring of single cell mitosis.
Collapse
|
3
|
Hope J, Aqrawe Z, Lim M, Vanholsbeeck F, McDaid A. Increasing signal amplitude in electrical impedance tomography of neural activity using a parallel resistor inductor capacitor (RLC) circuit. J Neural Eng 2019; 16:066041. [PMID: 31536974 DOI: 10.1088/1741-2552/ab462b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To increase the impedance signal amplitude produced during neural activity using a novel approach of implementing a parallel resistor inductor capacitor (RLC) circuit across the current source used in electrical impedance tomography (EIT) of peripheral nerve. APPROACH The frequency response of the impedance signal was characterized in the range 4-18 kHz, then a frequency range with significant capacitive charge transfer was selected for experiment with the RLC circuit. Design of the RLC circuit was aided by in vitro impedance measurements on nerve and nerve cuff in the range 5 Hz to 50 kHz. MAIN RESULTS The frequency response of the impedance signal across 4-18 kHz showed maximum amplitude at 6-8 kHz, and steady decline in amplitude between 8 and 18 kHz with -6 dB reduction at 14 kHz. The frequency range 17 ± 1 kHz was selected for the RLC experiment. The RLC experiment was performed on four subjects using an RLC circuit designed to produce a resonant frequency of 17 kHz with a bandwidth of 3.6 kHz, and containing a 22 mH inductive element and a 3.45 nF capacitive element with +0.8/- 3.45 nF manual tuning range. With the RLC circuit connected, relative increases in the impedance signal (±3σ noise) of 44% (±15%), 33% (±30%), 37% (±8.6%), and 16% (±19%) were produced. SIGNIFICANCE The increase in impedance signal amplitude at high frequencies, generated by the novel implementation of a parallel RLC circuit across the drive current, improves spatial resolution by increasing the number of parallel drive currents which can be implemented in a frequency division multiplexed (FDM) EIT system, and aids the long term goal of a real-time FDM EIT system by reducing the need for ensemble averaging.
Collapse
Affiliation(s)
- J Hope
- The Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand. Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
4
|
Darnajou M, Dupré A, Dang C, Ricciardi G, Bourennane S, Bellis C. On the Implementation of Simultaneous Multi-Frequency Excitations and Measurements for Electrical Impedance Tomography. SENSORS 2019; 19:s19173679. [PMID: 31450594 PMCID: PMC6749333 DOI: 10.3390/s19173679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
The investigation of quickly-evolving flow patterns in high-pressure and high-temperature flow rigs requires the use of a high-speed and non-intrusive imaging technique. Electrical Impedance Tomography (EIT) allows reconstructing the admittivity distribution characterizing a flow from the knowledge of currents and voltages on its periphery. The need for images at high frame rates leads to the strategy of simultaneous multi-frequency voltage excitations and simultaneous current measurements, which are discriminated using fast Fourier transforms. The present study introduces the theory for a 16-electrode simultaneous EIT system, which is then built based on a field programmable gate array data acquisition system. An analysis of the propagation of uncertainties through the measurement process is investigated, and experimental results with fifteen simultaneous signals are presented. It is shown that the signals are successfully retrieved experimentally at a rate of 1953 frames per second. The associated signal-to-noise ratio varies from 59.6–69.1 dB, depending on the generated frequency. These preliminary results confirm the relevance and the feasibility of simultaneous multi-frequency excitations and measurements in EIT as a means to significantly increase the imaging rate.
Collapse
Affiliation(s)
- Mathieu Darnajou
- CEA Cadarache, 13115 Saint-Paul-lez-Durance, France.
- École Centrale de Marseille, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France.
| | - Antoine Dupré
- Department of Paediatrics, University of Geneva, 1205 Geneva, Switzerland
| | - Chunhui Dang
- CEA Cadarache, 13115 Saint-Paul-lez-Durance, France
- École Centrale de Marseille, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France
| | | | - Salah Bourennane
- École Centrale de Marseille, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France
| | - Cédric Bellis
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France
| |
Collapse
|
5
|
Dupré A, Mylvaganam S. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity. SENSORS 2018; 18:s18041013. [PMID: 29597327 PMCID: PMC5948595 DOI: 10.3390/s18041013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022]
Abstract
This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode). This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc.).
Collapse
Affiliation(s)
- Antoine Dupré
- Private Practice, Jouquetti, 05400 Furmeyer, France.
| | - Saba Mylvaganam
- Department of Electrical Engineering, IT and Cybernetics, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Porsgrunn 3901, Norway.
| |
Collapse
|
6
|
Development of a High-Speed Current Injection and Voltage Measurement System for Electrical Impedance Tomography-Based Stretchable Sensors. TECHNOLOGIES 2017. [DOI: 10.3390/technologies5030048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wang L. Electromagnetic induction holography imaging for stroke detection. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:294-298. [PMID: 28157857 DOI: 10.1364/josaa.34.000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents the application of the electromagnetic induction holography (EMIH) approach to imaging the electromagnetic activity of the brain, with a particular focus on stroke detection. An integral equation formulation is presented to describe the scattered magnetic field from the distribution of optically small dielectric and magnetic objects of arbitrary shapes adsorbed onto a planar electromagnetic substrate. A numerical computer model was developed in a MATLAB environment to validate the theory. Several realistic human head models were developed to investigate the detectability of strokes with the multi-channel EMIH system. Small strokes can be clearly identified with the correct location and size in the reconstructed head images. The simulation results demonstrated the feasibility of detecting and imaging small strokes using the approach.
Collapse
|
8
|
Tšoeu MS, Inggs MR. Fully Parallel Electrical Impedance Tomography Using Code Division Multiplexing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:556-566. [PMID: 26731774 DOI: 10.1109/tbcas.2015.2487321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrical Impedance Tomography (EIT) has been dominated by the use of Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM) as methods of achieving orthogonal injection of excitation signals. Code Division Multiplexing (CDM), presented in this paper is an alternative that eliminates temporal data inconsistencies of TDM for fast changing systems. Furthermore, this approach eliminates data inconsistencies that arise in FDM when frequency bands of current injecting electrodes are chosen over frequencies that have large changes in the imaged object's impedance. To the authors knowledge no fully functional wideband system or simulation platform using simultaneous injection of Gold codes currents has been reported. In this paper, we formulate, simulate and develop a fully functional pseudo-random (Gold) code driven EIT system with 15 excitation currents and 16 separate voltage measurement electrodes. In the work we verify the use of CDM as a multiplexing modality in simultaneous injection EIT, using a prototype system with an overall bandwidth of 15 kHz, and attainable speed of 462 frames/s using codes with a period of 31 chips. Simulations and experiments are performed using the Electrical Impedance and Diffuse Optics Reconstruction Software (EIDORS). We also propose the use of image processing on reconstructed images to establish their quality quantitatively without access to raw reconstruction data. The results of this study show that CDM can be successfully used in EIT, and gives results of similar visual quality to TDM and FDM. Achieved performance shows average position error of 3.5% and size error of 6.2%.
Collapse
|
9
|
Faia PM, Silva R, Rasteiro MG, Garcia FAP, Ferreira AR, Santos MJ, Santos JB, Coimbra AP. Imaging Particulate Two-Phase Flow in Liquid Suspensions with Electric Impedance Tomography. PARTICULATE SCIENCE AND TECHNOLOGY 2012. [DOI: 10.1080/02726351.2011.575444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography. SENSORS 2012; 12:7126-56. [PMID: 22969341 PMCID: PMC3435970 DOI: 10.3390/s120607126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 11/16/2022]
Abstract
Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology.
Collapse
|
11
|
McEwan A, Tapson J, van Schaik A, Holder DS. Code-division-multiplexed electrical impedance tomography spectroscopy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2009; 3:332-338. [PMID: 23853272 DOI: 10.1109/tbcas.2009.2032159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrical impedance tomography uses multiple impedance measurements to image the internal conductivity of an object, such as the human body. Code-division multiplexing is proposed as a new method that can provide simultaneous impedance measurements of the multiple channels. Code division provides clear advantages of a wide frequency range at reduced cost and reduced complexity of sources. A potential drawback is the lack of perfectly orthogonal code sets. This caused an increase of 0.62% in root-mean-square spectral error when two codes were used to record two impedance channels simultaneously on a low-pass filter network. The method described provides images and spectra which are equivalent to the conventional time-multiplexed method, with increases in frequency resolution and measurement speed which may be of benefit in some applications of electrical impedance tomography spectroscopy.
Collapse
|
12
|
Granot Y, Ivorra A, Rubinsky B. A new concept for medical imaging centered on cellular phone technology. PLoS One 2008; 3:e2075. [PMID: 18446199 PMCID: PMC2312332 DOI: 10.1371/journal.pone.0002075] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/18/2008] [Indexed: 12/16/2022] Open
Abstract
According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a) a data acquisition device (DAD) at a remote patient site that is simple, with limited controls and no image display capability and b) an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site). The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode.
Collapse
Affiliation(s)
- Yair Granot
- Biophysics Graduate Group, Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, California, United States of America
| | - Antoni Ivorra
- Biophysics Graduate Group, Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, California, United States of America
| | - Boris Rubinsky
- Biophysics Graduate Group, Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, California, United States of America
- Research Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|