1
|
Inagaki J, Nakano A, Hatipoglu OF, Ooka Y, Tani Y, Miki A, Ikemura K, Opoku G, Ando R, Kodama S, Ohtsuki T, Yamaji H, Yamamoto S, Katsuyama E, Watanabe S, Hirohata S. Potential of a Novel Chemical Compound Targeting Matrix Metalloprotease-13 for Early Osteoarthritis: An In Vitro Study. Int J Mol Sci 2022; 23:ijms23052681. [PMID: 35269821 PMCID: PMC8910651 DOI: 10.3390/ijms23052681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound library to identify new drug candidates that target MMP and ADAMTS using a cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a potential candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated IL-1β-induced MMP13 mRNA expression in a dose-dependent manner, without causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone on IL-1β-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9 mRNA expression. In conclusion, we identified a potential compound of interest that may help attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints.
Collapse
Affiliation(s)
- Junko Inagaki
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Airi Nakano
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Higashi-Sayama, Osaka 577-8502, Japan;
| | - Yuka Ooka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Yurina Tani
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Akane Miki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Kentaro Ikemura
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Gabriel Opoku
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Ryosuke Ando
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Shintaro Kodama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Hirosuke Yamaji
- Heart Rhythm Center, Okayama Heart Clinic, Takeda 54-1, Okayama 703-8251, Japan;
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Eri Katsuyama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
- Correspondence: ; Tel./Fax: +81-86-235-6897
| |
Collapse
|
2
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. Int J Mol Sci 2022; 23:ijms23031096. [PMID: 35163019 PMCID: PMC8834928 DOI: 10.3390/ijms23031096] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Due to resistance to standard anticancer agents, it is difficult to control the disease progression in patients with metastatic or unresectable chondrosarcoma. Novel therapeutic approaches, such as molecule-targeting drugs and immunotherapy, are required to improve clinical outcomes in patients with advanced chondrosarcoma. Recent studies have suggested several promising biomarkers and therapeutic targets for chondrosarcoma, including IDH1/2 and COL2A1. Several molecule-targeting agents and immunotherapies have shown favorable antitumor activity in clinical studies in patients with advanced chondrosarcomas. This review summarizes recent basic studies on biomarkers and molecular targets and recent clinical studies on the treatment of chondrosarcomas.
Collapse
|
3
|
Higuchi T, Takeuchi A, Munesue S, Yamamoto N, Hayashi K, Kimura H, Miwa S, Inatani H, Shimozaki S, Kato T, Aoki Y, Abe K, Taniguchi Y, Aiba H, Murakami H, Harashima A, Yamamoto Y, Tsuchiya H. Anti-tumor effects of a nonsteroidal anti-inflammatory drug zaltoprofen on chondrosarcoma via activating peroxisome proliferator-activated receptor gamma and suppressing matrix metalloproteinase-2 expression. Cancer Med 2018; 7:1944-1954. [PMID: 29573200 PMCID: PMC5943440 DOI: 10.1002/cam4.1438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/28/2022] Open
Abstract
Surgical resection is the only treatment for chondrosarcomas, because of their resistance to chemotherapy and radiotherapy; therefore, additional strategies are crucial to treat chondrosarcomas. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor, which has been reported as a possible therapeutic target in certain malignancies including chondrosarcomas. In this study, we demonstrated that a nonsteroidal anti-inflammatory drug, zaltoprofen, could induce PPARγ activation and elicit anti-tumor effects in chondrosarcoma cells. Zaltoprofen was found to induce expressions of PPARγ mRNA and protein in human chondrosarcoma SW1353 and OUMS27 cells, and induce PPARγ-responsible promoter reporter activities. Inhibitory effects of zaltoprofen were observed on cell viability, proliferation, migration, and invasion, and the activity of matrix metalloproteinase-2 (MMP2); these effects were dependent on PPARγ activation and evidenced by silencing PPARγ. Moreover, we showed a case of a patient with cervical chondrosarcoma (grade 2), who was treated with zaltoprofen and has been free from disease progression for more than 2 years. Histopathological findings revealed enhanced expression of PPARγ and reduced expression of MMP2 after administration of zaltoprofen. These findings demonstrate that zaltoprofen could be a promising drug against the malignant phenotypes in chondrosarcomas via activation of PPARγ and inhibition of MMP2 activity.
Collapse
Affiliation(s)
- Takashi Higuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroyuki Inatani
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shingo Shimozaki
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takashi Kato
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yu Aoki
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kensaku Abe
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hisaki Aiba
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
4
|
Cakmak O, Comertoglu I, Firat R, Erdemli HK, Kursunlu SF, Akyol S, Ugurcu V, Altuntas A, Adam B, Demircan K. The Investigation of ADAMTS16 in Insulin-Induced Human Chondrosarcoma Cells. Cancer Biother Radiopharm 2016; 30:255-60. [PMID: 26181853 DOI: 10.1089/cbr.2015.1840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not. METHODS Chondrosarcoma cells were cultured in Dulbecco's modified Eagle's medium having either 10 μg/mL insulin or not. While the experiment was going on, the medium containing insulin had been changed every other day. Cells were harvested at 1st, 3rd, 7th, and 11th days; subsequently, RNA and proteins were isolated in every experimental group according to their time interval. RNA expression of ADAMTS was estimated by quantitative real-time polymerase chain reaction (qRT-PCR) by using primers. Immunoreactive protein levels were encountered by the western blot protein detection technique by using proper anti-ADAMTS16 antibodies. RESULTS ADAMTS16 mRNA expression level of chondrosarcoma cells was found to be insignificantly decreased in chondrosarcoma cells induced by insulin detected by the qRT-PCR instrument. On the other hand, there was a gradual decrease in immune-reactant ADAMTS16 protein amount by the time course in insulin-treated cell groups when compared with control cells. CONCLUSION It has been suggested that insulin might possibly regulate ADAMTS16 levels/activities in OUMS-27 chondrosarcoma cells taking a role in extracellular matrix turnover.
Collapse
Affiliation(s)
- Ozlem Cakmak
- 1 Department of Biology Educations, Faculty of Education, Gazi University , Ankara, Turkey
| | - Ismail Comertoglu
- 2 Department of Medical Genetics, Faculty of Medicine, Mevlana University , Konya, Turkey
| | - Ridvan Firat
- 3 Division of Medical Biochemistry Laboratory, Golbasi State Hospital , Ankara, Turkey
| | - Haci Kemal Erdemli
- 4 Department of Biochemistry Laboratory, Corum Training and Research Hospital , Corum, Turkey
| | - S Fatih Kursunlu
- 5 Department of Periodontology, Faculty of Dentistry, Adnan Menderes University , Aydın, Turkey
| | - Sumeyya Akyol
- 6 Department of Medical Biology, Faculty of Medicine, Turgut Ozal University , Ankara, Turkey
| | - Veli Ugurcu
- 7 Department of Medical Biochemistry, Dumlupinar University Medical Faculty , Kutahya, Turkey
| | - Aynur Altuntas
- 8 Division of Chemistry, Ankara Regional Office of Council of Forensic Medicine , Ankara, Turkey
| | - Bahattin Adam
- 9 University of California Davis Medical School , Department of Biochemistry and Molecular Medicine, Sacramento, California
| | - Kadir Demircan
- 6 Department of Medical Biology, Faculty of Medicine, Turgut Ozal University , Ankara, Turkey
| |
Collapse
|
5
|
Akyol S, Cömertoğlu I, Firat R, Çakmak Ö, Yukselten Y, Erden G, Ugurcu V, Demircan K. Effect of insulin on the mRNA expression of procollagen N-proteinases in chondrosarcoma OUMS-27 cells. Oncol Lett 2015; 10:1091-1096. [PMID: 26622631 DOI: 10.3892/ol.2015.3317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 04/14/2015] [Indexed: 12/30/2022] Open
Abstract
Chondrosarcoma is one of the most common bone tumors, and at present, there is no non-invasive treatment option for this cancer. The chondrosarcoma OUMS-27 cell line produces proteoglycan and type II, IX, and XI collagens, which constitutes cartilage tissue. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteases are a group of secreted proteases, which include the procollagen N-proteinases ADAMTS-2, -3 and -14. These procollagen N-proteinases perform a role in the processing of procollagens to collagen and the maturation of type I collagen. The present study aimed to improve the understanding of the causes of metastasis, local invasion and resistance to chemo- and radiotherapy in chondrosarcoma, as well as the effect of insulin on cancer cells. The present study was designed to reveal the effects of insulin on procollagen N-proteinases in chondrosarcoma OUMS-27 cells. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM) alone or in DMEM containing 10 µg/ml insulin. The medium was changed every other day for 11 days. The cells were harvested on days 1, 3, 7 and 11, and total RNA isolation was performed immediately following harvesting. The expression levels of ADAMTS2, ADAMTS3 and ADAMTS14 mRNA were estimated by reverse transcription-quantitative polymerase chain reaction using appropriate primers. ADAMTS2 mRNA expression was found to be decreased on day 7 (P=0.028) and increased at day 11 compared with the control group (P=0.016). The increase in mRNA concentration at day 11 was significantly different compared to the concentrations on days 3 (P=0.047) and 7 (P=0.008). The expression of ADAMTS3 mRNA decreased immediately subsequent to insulin induction on day 1 compared with the control group (P=0.008). The most evident decrease in mRNA concentration was seen at day 7 subsequent to insulin induction (P=0.008). The present results demonstrated that ADAMTS2 and ADAMTS3 may perform a role in the invasion and metastasis of tumors, and may also possess proteolytic activity that results in the breakdown of the extracellular matrix (ECM). Insulin itself can modulate the biosynthesis of ECM macromolecules that are altered in diabetes through various pathways.
Collapse
Affiliation(s)
- Sumeyya Akyol
- Department of Medical Biology, Turgut Ozal University School of Medicine, Ankara, Ankara 06170, Turkey
| | - Ismail Cömertoğlu
- Department of Medical Genetics, Faculty of Medicine, Mevlana University, Selcuklu, Konya 42003, Turkey
| | - Ridvan Firat
- Division of Clinical Biochemistry Laboratory, Golbasi Hospital, Ministry of Health, Golbasi, Ankara 06830, Turkey
| | - Özlem Çakmak
- Department of Biology, Faculty of Education, Gazi University, Ankara, Ankara 06500, Turkey
| | - Yunus Yukselten
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Gönül Erden
- Department of Clinical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Ankara 06100, Turkey
| | - Veli Ugurcu
- Department of Medical Biochemistry, Faculty of Medicine, Dumlupinar University, Kutahya, Kutahya 43266, Turkey
| | - Kadir Demircan
- Department of Medical Biology, Turgut Ozal University School of Medicine, Ankara, Ankara 06170, Turkey
| |
Collapse
|
6
|
Italiano A, Mir O, Cioffi A, Palmerini E, Piperno-Neumann S, Perrin C, Chaigneau L, Penel N, Duffaud F, Kurtz JE, Collard O, Bertucci F, Bompas E, Le Cesne A, Maki RG, Ray Coquard I, Blay JY. Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol 2013; 24:2916-22. [PMID: 24099780 DOI: 10.1093/annonc/mdt374] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There are limited data about the role of chemotherapy in patients with advanced chondrosarcomas. METHODS The medical charts of 180 patients with advanced chondrosarcomas having received chemotherapy in 15 participating institutions between 1988 and 2011 were reviewed. RESULTS Median age was 52 years. Sixty-three percent of patients had conventional chondrosarcoma and 88% had metastatic disease. Combination chemotherapy was delivered in 98 cases (54.5%). One hundred and thirty-one patients (73%) received an anthracycline-containing regimen. Using RECIST, the objective response rate was significantly different according to histological subtype, being 31% for mesenchymal chondrosarcoma, 20.5% for dedifferentiated chondrosarcoma, 11.5% for conventional chondrosarcoma and 0% for clear-cell chondrosarcoma (P = 0.04). Median progression-free survival (PFS) was 4.7 months [95% confidence interval (CI) 3-6.5]. Performance status (PS) ≥2, number of metastatic sites ≥1 and single-agent regimen were independently associated with poor PFS. Median overall survival (OS) was 18 months (95% CI 14.5-21.6). PS, number of metastatic sites and palliative surgery were independently associated with OS. CONCLUSIONS Conventional chemotherapy have very limited efficacy in patients with advanced chondrosarcoma, the highest benefit being observed in mesenchymal and dedifferentiated chondrosarcoma. These data should be used as a reference for response and outcome in the assessment of investigational drugs in advanced chondrosarcoma.
Collapse
Affiliation(s)
- A Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang P, Guan PP, Guo C, Zhu F, Konstantopoulos K, Wang ZY. Fluid shear stress-induced osteoarthritis: roles of cyclooxygenase-2 and its metabolic products in inducing the expression of proinflammatory cytokines and matrix metalloproteinases. FASEB J 2013; 27:4664-77. [PMID: 23964078 DOI: 10.1096/fj.13-234542] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanical overloading of cartilage is involved in the pathophysiology of osteoarthritis (OA) by both biochemical and mechanical pathways. The application of fluid shear stress to chondrocytes recapitulates the earmarks of OA, as evidenced by the release of proinflammatory cytokines (PICs), matrix metalloproteinases (MMPs), and apoptotic factors. Dysregulations or mutations in these genes might directly cause OA in addition to determining the stage at which OA becomes apparent, the joint sites involved, and the severity of the disease and how rapidly it progresses. However, the underlying mechanisms remain unknown. In this review, we propose that the dysregulation of cyclooxygenase-2 (COX-2) is associated with fluid shear stress-induced OA via its metabolic products at different stages of the disease. Indeed, high fluid shear stress rapidly induces the production of PICs and MMPs via COX-2-derived prostaglandin (PG)E2 at the early stage of OA. In contrast, prolonged shear exposure (>12 h) aggravates the condition by concurrently up-regulating the expression of proapoptotic genes and down-regulating the expression of antiapoptotic genes in a 15-deoxy-Δ (12,14)-prostaglandin J2 (15d-PGJ2)-dependent manner at the late stage of disease. These observations may help to resolve long-standing questions in OA progression and provide insight for development of strategies to treat and combat OA.
Collapse
Affiliation(s)
- Pu Wang
- 1Z.-Y.W., College of Life and Health Sciences, Northeastern University, Shenyang, 110004, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
Subbiah V, Brown RE, Buryanek J, Trent J, Ashkenazi A, Herbst R, Kurzrock R. Targeting the apoptotic pathway in chondrosarcoma using recombinant human Apo2L/TRAIL (dulanermin), a dual proapoptotic receptor (DR4/DR5) agonist. Mol Cancer Ther 2012; 11:2541-6. [PMID: 22914439 DOI: 10.1158/1535-7163.mct-12-0358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recombinant human Apo2L/TRAIL (dulanermin) is based on the ligand for death receptors (DR4 and DR5), which promotes apoptosis. We report a patient with refractory chondrosarcoma who showed a prolonged response to dulanermin and explore mechanisms of response and resistance. This heavily pretreated patient had progressive metastatic chondrosarcoma to the lung. On dulanermin (8 mg/kg i.v. on days 1-5 in a 21-day cycle), the patient achieved a sustained partial response with only subcentimeter nodules remaining. After 62 months of dulanermin treatment, progressive disease in the lungs was noted, and the patient underwent a resection that confirmed chondrosarcoma. DR4 was detected (immunohistochemistry) in the patient's tumor, which may have enabled the response. However, upregulation of prosurvival proteins, namely, phosphorylated (p)-NF-κBp65 (Ser 536), p-STAT3 (Tyr 705), p-ERK 1/2 (Thr 202/Tyr 204), p-mTOR (Ser 2448), FASN, and Bcl-2, were also detected, which may have provided the underlying mechanisms for acquired dulanermin resistance. The patient was restarted on dulanermin and has continued on this treatment for an additional 16 months since surgery (78 months since initiation of treatment), with his most recent computed tomography (CT) scans showing no evidence of disease.
Collapse
Affiliation(s)
- Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 455, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Bloch O, Sughrue ME, Mills SA, Parsa AT. Signaling pathways in cranial chondrosarcoma: potential molecular targets for directed chemotherapy. J Clin Neurosci 2011; 18:881-5. [DOI: 10.1016/j.jocn.2010.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 12/31/2022]
|
10
|
Abstract
Chondrosarcomas are malignant cartilage tumours. They are poorly responsive to chemotherapy and radiotherapy. Treatment is usually limited to surgical resection; however, survival of patients with high-grade chondrosarcoma is poor, even with wide surgical resection. Induction of apoptosis in chondrosarcoma cells, either directly or by enhancement of the response to chemotherapeutic drugs and radiation, may be a route by which outcome can be improved. In this article, we review potential molecular targets that regulate chondrocyte apoptosis and discuss the experimental evidence for their utility.
Collapse
Affiliation(s)
- Nuor Jamil
- Osteoarticular Research Group, Centre for Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
11
|
Therapeutic Implications of PPARgamma in Human Osteosarcoma. PPAR Res 2010; 2010:956427. [PMID: 20182546 PMCID: PMC2825651 DOI: 10.1155/2010/956427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common nonhematologic malignancy of bone in children and adults. Although dysregulation of tumor suppressor genes and oncogenes, such as Rb, p53, and the genes critical to cell cycle control, genetic stability, and apoptosis have been identified in OS, consensus genetic changes that lead to OS development are poorly understood. Disruption of the osteogenic differentiation pathway may be at least in part responsible for OS tumorigenesis. Current OS management involves chemotherapy and surgery. Peroxisome proliferator-activated receptor (PPAR) agonists and/or retinoids can inhibit OS proliferation and induce apoptosis and may inhibit OS growth by promoting osteoblastic terminal differentiation. Thus, safe and effective PPAR agonists and/or retinoid derivatives can be then used as adjuvant therapeutic drugs for OS therapy. Furthermore, these agents have the potential to be used as chemopreventive agents for the OS patients who undergo the resection of the primary bone tumors in order to prevent local recurrence and/or distal pulmonary metastasis.
Collapse
|
12
|
Luther G, Rames R, Wagner ER, Zhu G, Luo Q, Bi Y, Kim SH, Gao JL, Huang E, Yang K, Wang L, Liu X, Li M, Hu N, Su Y, Luo X, Chen L, Luo J, Haydon RC, Luu HH, Zhou L, He TC. Molecular basis of differentiation therapy for soft tissue sarcomas. TRENDS IN CANCER RESEARCH 2010; 6:69-90. [PMID: 26912947 PMCID: PMC4762605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stem cells are undifferentiated precursor cells with the capacity for proliferation or terminal differentiation. Progression down the differentiation cascade results in a loss of proliferative potential in exchange for the differentiated phenotype. This balance is tightly regulated in the physiologic state. Recent studies, however, have demonstrated that during tumorigenesis, disruptions preventing terminal differentiation allow cancer cells to maintain a proliferative, precursor cell phenotype. Current therapies (i.e., chemotherapy and radiation therapy) target the actively proliferating cells in tumor masses, which in many cases inevitably induce therapy-resistant cancer cells. It is conceivable that promising therapy regimens can be developed by treating human cancers by inducing terminal differentiation, thereby restoring the interrupted pathway and shifting the balance from proliferation to differentiation. For example, osteosarcoma (OS) is a primary bone cancer caused by differentiation defects in mesenchymal stem cells (MSCs) for which several differentiation therapies have shown great promise. In this review, we discuss the various differentiation therapies in the treatment of human sarcomas with a focus on OS. Such therapies hold great promise as they not only inhibit tumorigenesis, but also avoid the adverse effects associated with conventional chemotherapy regimens. Furthermore, it is conceivable that a combination of conventional therapies with differentiation therapy should significantly improve anticancer efficacy and reduce drug-resistance in the clinical management of human cancers, including sarcomas.
Collapse
Affiliation(s)
- Gaurav Luther
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Rames
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric R. Wagner
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Gaohui Zhu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qing Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Stephanie H. Kim
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jian-Li Gao
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Enyi Huang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Cell Biology, The Third Military Medical University, Chongqing 400030, China
| | - Linyuan Wang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mi Li
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ning Hu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Su
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoji Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Liang Chen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Jinyong Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lan Zhou
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Clark JCM, Dass CR, Choong PFM. Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg 2009; 79:327-36. [PMID: 19566512 DOI: 10.1111/j.1445-2197.2009.04884.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chondrosarcoma is a primary cancer of bone causing significant morbidity due to local recurrence and limited treatment options. Relatively few chondrosarcoma animal models have been developed, and the only orthotopic model is technically demanding and has limited clinical relevance. The aim of this review is to assess the features of current animal chondrosarcoma models for the purpose of developing new models in which to test adjuvant chondrosarcoma therapy. The available literature on this topic was identified using the PubMed database, and then analysed for relevance to the human chondrosarcoma disease and feasibility in testing new therapeutic agents. Animal-derived chondrosarcoma models comprise predominantly allograft tumour transplanted into the rat (Swarm rat chondrosarcoma) or the hamster. These types of models are less relevant to the human disease and have been more useful for evaluation of chondrosarcoma growth and histology than in developing novel therapeutic agents. The athymic nude mouse has enabled reliable human xenograft transplantation. A number of human chondrosarcoma cell lines have been successfully used to generate tumours in this species, including OUMS-27 and HCS-2/A. Although effective in demonstrating anti-tumour effects of a number of agents, the lack of a representative orthotopic model diminishes overall clinical relevance. More clinically relevant models of human chondrosarcoma progression are required either through transgenic mice or orthotopic human xenograft models.
Collapse
Affiliation(s)
- J C M Clark
- Department of Orthopaedics, University of Melbourne Department of Surgery, St Vincent's Health, Melbourne, Australia
| | | | | |
Collapse
|