1
|
Fischer F, Vorontsov E, Turlin E, Malosse C, Garcia C, Tabb DL, Chamot-Rooke J, Percudani R, Vinella D, De Reuse H. Expansion of nickel binding- and histidine-rich proteins during gastric adaptation of Helicobacter species. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6674772. [PMID: 36002005 DOI: 10.1093/mtomcs/mfac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022]
Abstract
Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a Histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OG) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 ± 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 ± 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal Histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme-oxygenases. The expansion of Histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel-enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE.,Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, Université de Strasbourg, Institut de Physiologie et Chimie Biologiques, 4 allée Konrad Roentgen, 67084 Strasbourg, FRANCE
| | - Egor Vorontsov
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE.,Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 413, 40530 Gothenburg, SWEDEN
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Christian Malosse
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Camille Garcia
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - David L Tabb
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Julia Chamot-Rooke
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, ITALY
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| |
Collapse
|
2
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
3
|
Abstract
Metalloproteins play diverse and critical functions in all living systems, and their dysfunctional forms are closely related to many human diseases. The development of methods that enable comprehensive mapping of metalloproteome is of great interest to help elucidate crucial roles of metalloproteins in both physiology and pathology, as well as to discover new metalloproteins. We herein briefly review recent progress in the field of metalloproteomics and provide future outlooks.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Lai YT, Yang Y, Hu L, Cheng T, Chang YY, Koohi-Moghadam M, Wang Y, Xia J, Wang J, Li H, Sun H. Integration of fluorescence imaging with proteomics enables visualization and identification of metallo-proteomes in living cells. Metallomics 2017; 9:38-47. [PMID: 27830853 DOI: 10.1039/c6mt00169f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metalloproteins account for nearly one-third of proteins in proteomes. To date, the identification of metalloproteins relies mainly on protein purification and the subsequent characterization of bound metals, which often leads to losses of metal ions bound weakly and transiently. Herein, we developed a strategy to visualize and subsequently identify endogenous metalloproteins and metal-binding proteins in living cells via integration of fluorescence imaging with proteomics. We synthesized a "metal-tunable" fluorescent probe (denoted as Mn+-TRACER) that rapidly enters cells to target proteins with 4-40 fold fluorescence enhancements. By using Ni2+-TRACER as an example, we demonstrate the feasibility of tracking Ni2+-binding proteins in vitro, while cellular small molecules exhibit negligible interference on the labeling. We identified 44 Ni2+-binding proteins from microbes using Helicobacter pylori as a showcase. We further applied Cu2+-TRACER to mammalian cells and found 54 Cu2+-binding proteins. The strategy we report here provides a great opportunity to track various endogenous metallo-proteomes and to mine potential targets of metallodrugs.
Collapse
Affiliation(s)
- Yau-Tsz Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Ya Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Ligang Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Mohamad Koohi-Moghadam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Yuchuan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Junwen Wang
- Center for Individualized Medicine & Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259 USA and Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259 USA
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| |
Collapse
|
5
|
Jiménez-Lamana J, Szpunar J. Analytical approaches for the characterization of nickel proteome. Metallomics 2017; 9:1014-1027. [DOI: 10.1039/c7mt00054e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analytical strategies to study the nickel proteome and their advantages and limitations.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE)
- UMR 5254-IPREM
- CNRS-UPPA
- Hélioparc
- France
| | - Joanna Szpunar
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE)
- UMR 5254-IPREM
- CNRS-UPPA
- Hélioparc
- France
| |
Collapse
|
6
|
|
7
|
Fang C, Zhang L, Zhang X, Lu H. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations. Analyst 2015; 140:4197-205. [PMID: 25913209 DOI: 10.1039/c5an00599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.
Collapse
Affiliation(s)
- Caiyun Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | | | |
Collapse
|
8
|
Zanotti G, Cendron L. Structural and functional aspects of the Helicobacter pylori secretome. World J Gastroenterol 2014; 20:1402-1423. [PMID: 24587618 PMCID: PMC3925851 DOI: 10.3748/wjg.v20.i6.1402] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Proteins secreted by Helicobacter pylori (H. pylori), an important human pathogen responsible for severe gastric diseases, are reviewed from the point of view of their biochemical characterization, both functional and structural. Despite the vast amount of experimental data available on the proteins secreted by this bacterium, the precise size of the secretome remains unknown. In this review, we consider as secreted both proteins that contain a secretion signal for the periplasm and proteins that have been detected in the external medium in in vitro experiments. In this way, H. pylori’s secretome appears to be composed of slightly more than 160 proteins, but this number must be considered very cautiously, not only because the definition of secretome itself is ambiguous but also because the included proteins were observed as secreted in in vitro experiments that were not representative of the environmental situation in vivo. The proteins that appear to be secreted can be grouped into different classes: enzymes (48 proteins), outer membrane proteins (43), components of flagella (11), members of the cytotoxic-associated genes pathogenicity island or other toxins (8 and 5, respectively), binding and transport proteins (9), and others (11). A final group, which includes 28 members, is represented by hypothetical uncharacterized proteins. Despite the large amount of data accumulated on the H. pylori secretome, a considerable amount of work remains to reach a full comprehension of the system at the molecular level.
Collapse
|
9
|
Ge R, Sun X, Wang D, Zhou Q, Sun H. Histidine-rich protein Hpn from Helicobacter pylori forms amyloid-like fibrils in vitro and inhibits the proliferation of gastric epithelial AGS cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1422-7. [PMID: 21539864 DOI: 10.1016/j.bbamcr.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 02/06/2023]
|
10
|
Sun X, Xiao CL, Ge R, Yin X, Li H, Li N, Yang X, Zhu Y, He X, He QY. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry. Proteomics 2011; 11:3288-98. [PMID: 21751346 DOI: 10.1002/pmic.201000396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 05/04/2011] [Accepted: 05/11/2011] [Indexed: 11/09/2022]
Abstract
The aim of metalloproteomics is to identify and characterize putative metal-binding proteins and metal-binding motifs. In this study, we performed a systematical metalloproteomic analysis on Streptococcus pneumoniae through the combined use of efficient immobilized metal affinity chromatography enrichment and high-accuracy linear ion trap-Orbitrap MS to identify metal-binding proteins and metal-binding peptides. In total, 232 and 166 putative metal-binding proteins were respectively isolated by Cu- and Zn-immobilized metal affinity chromatography columns, in which 133 proteins were present in both preparations. The putative metalloproteins are mainly involved in protein, nucleotide and carbon metabolisms, oxidation and cell cycle regulation. Based on the sequence of the putative Cu- and Zn-binding peptides, putative Cu-binding motifs were identified: H(X)mH (m=0-11), C(X)(2) C, C(X)nH (n=2-4, 6, 9), H(X)iM (i=0-10) and M(X)tM (t=8 or 12), while putative Zn-binding motifs were identified as follows: H(X)mH (m=1-12), H(X)iM (i=0-12), M(X)tM (t=0, 3 and 4), C(X)nH (n=1, 2, 7, 10 and 11). Equilibrium dialysis and inductively coupled plasma-MS experiments confirmed that the artificially synthesized peptides harboring differential identified metal-binding motifs interacted directly with the metal ions. The metalloproteomic study presented here suggests that the comparably large size and diverse functions of the S. pneumoniae metalloproteome may play important roles in various biological processes and thus contribute to the bacterial pathologies.
Collapse
Affiliation(s)
- Xuesong Sun
- Institute of Life and Health Engineering/National Engineering and Research Center of Genetic Medicine, Jinan University, Guangzhou, P R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ge R, Sun X, Xiao C, Yin X, Shan W, Chen Z, He QY. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori
reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Proteomics 2011; 11:1449-61. [PMID: 21360674 DOI: 10.1002/pmic.201000649] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/04/2011] [Accepted: 01/18/2011] [Indexed: 12/23/2022]
|
12
|
Tsang C, Ge R, Sun H. Metalloproteomics of Arsenic, Antimony and Bismuth Based Drugs. BIOLOGICAL CHEMISTRY OF ARSENIC, ANTIMONY AND BISMUTH 2010:353-376. [DOI: 10.1002/9780470975503.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Shi W, Chance MR. Metalloproteomics: forward and reverse approaches in metalloprotein structural and functional characterization. Curr Opin Chem Biol 2010; 15:144-8. [PMID: 21130021 DOI: 10.1016/j.cbpa.2010.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 11/20/2022]
Abstract
About one-third of all proteins are associated with a metal. Metalloproteomics is defined as the structural and functional characterization of metalloproteins on a genome-wide scale. The methodologies utilized in metalloproteomics, including both forward (bottom-up) and reverse (top-down) technologies, to provide information on the identity, quantity, and function of metalloproteins are discussed. Important techniques frequently employed in metalloproteomics include classical proteomic tools such as mass spectrometry and 2D gels, immobilized-metal affinity chromatography, bioinformatic sequence analysis and homology modeling, X-ray absorption spectroscopy and other synchrotron radiation based tools. Combinative applications of these techniques provide a powerful approach to understand the function of metalloproteins.
Collapse
Affiliation(s)
- Wuxian Shi
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Ave, BRB 113, Cleveland, OH 44106, USA
| | | |
Collapse
|
14
|
Sun H, Chai ZF. Metallomics: An integrated science for metals in biology and medicine. ANNUAL REPORTS SECTION "A" (INORGANIC CHEMISTRY) 2010; 106:20. [DOI: 10.1039/b920672h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Qu W, Zhou Y, Shao C, Sun Y, Zhang Q, Chen C, Jia J. Helicobacter pylori proteins response to nitric oxide stress. J Microbiol 2009; 47:486-93. [PMID: 19763424 DOI: 10.1007/s12275-008-0266-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/01/2009] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is a highly pathogenic microorganism with various strategies to evade human immune responses. Nitric oxide (NO) and reactive nitrogen species (RNS) generated via nitric oxide synthase pathway are important effectors during the innate immune response. However, the mechanisms of H. pylori to survive the nitrosative stress are not clear. Here the proteomic approach has been used to define the adaptive response of H. pylori to nitrosative stress. Proteomic analysis showed that 38 protein spots were regulated by NO donor, sodium nitroprusside (SNP). These proteins were involved in protein processing, anti-oxidation, general stress response, and virulence, as well as some unknown functions. Particularly, some of them were participated in iron metabolism, potentially under the control of ferric uptake regulator (Fur). Real time PCR revealed that fur was induced under nitrosative stress, consistent with our deduction. One stress-related protein up-regulated under nitrosative conditions was thioredoxin reductase (TrxR). Inactivation of fur or trxR can lead to increased susceptivity to nitrosative stress respectively. These studies described the adaptive response of H. pylori to nitric oxide stress, and analyzed the relevant role of Fur regulon and TrxR in nitrosative stress management.
Collapse
Affiliation(s)
- Wei Qu
- Department of Microbiology and Key Lab for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012, P. R. China
| | | | | | | | | | | | | |
Collapse
|
16
|
Sun X, Tsang CN, Sun H. Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics 2009; 1:25-31. [DOI: 10.1039/b813121j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Wang Y, Liu B, Gong YH, Yuan Y. Susceptibility to allitridi of Helicobacter pylori with different genotypes in gastric diseases. Chin J Cancer Res 2008. [DOI: 10.1007/s11670-008-0268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
18
|
Loguercio S, Dian C, Flagiello A, Scannella A, Pucci P, Terradot L, Zagari A. In HspA from Helicobacter pylori vicinal disulfide bridges are a key determinant of domain B structure. FEBS Lett 2008; 582:3537-41. [PMID: 18805417 DOI: 10.1016/j.febslet.2008.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/10/2008] [Indexed: 01/22/2023]
Abstract
Helicobacter pylori produces a heat shock protein A (HspA) that is unique to this bacteria. While the first 91 residues (domain A) of the protein are similar to GroES, the last 26 (domain B) are unique to HspA. Domain B contains eight histidines and four cysteines and was suggested to bind nickel. We have produced HspA and two mutants: Cys94Ala and Cys94Ala/Cys111Ala and identified the disulfide bridge pattern of the protein. We found that the cysteines are engaged in three disulfide bonds: Cys51/Cys53, Cys94/Cys111 and Cys95/Cys112 that result in a unique closed loop structure for the domain B.
Collapse
Affiliation(s)
- Salvatore Loguercio
- Department of Biological Sciences and CNISM, University of Naples "Federico II", Via Mezzocannone 16, I-80134 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|