1
|
Khoury DM, Ghaoui N, El Tayar E, Dagher R, El Hawa M, Rubeiz N, Abbas O, Kurban M. Topical statins as antifungals: a review. Int J Dermatol 2024; 63:747-753. [PMID: 38344878 DOI: 10.1111/ijd.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024]
Abstract
Cutaneous fungal infections affect millions around the world. However, severe, multi-resistant fungal infections are increasingly being reported over the past years. As a result of the high rate of resistance which urged for drug repurposing, statins were studied and found to have multiple pleiotropic effects, especially when combined with other already-existing drugs. An example of this is the synergism found between several typical antifungals and statins, such as antifungals Imidazole and Triazole with a wide range of statins shown in this review. The main mechanisms in which they exert an antifungal effect are ergosterol inhibition, protein prenylation, mitochondrial disruption, and morphogenesis/mating inhibition. This article discusses multiple in vitro studies that have proven the antifungal effect of systemic statins against many fungal species, whether used alone or in combination with other typical antifungals. However, as a result of the high rate of drug-drug interactions and the well-known side effects of systemic statins, topical statins have become of increasing interest. Furthermore, patients with dyslipidemia treated with systemic statins who have a new topical fungal infection could benefit from the antifungal effect of their statin. However, it is still not indicated to initiate systemic statins in patients with topical mycotic infections if they do not have another indication for statin use, which raises the interest in using topical statins for fungal infections. This article also tackles the different formulations that have been studied to enhance topical statins' efficacy, as well as the effect of different topical statins on distinct dermatologic fungal diseases.
Collapse
Affiliation(s)
- Dana M Khoury
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nohra Ghaoui
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Ruby Dagher
- American University of Beirut, Beirut, Lebanon
| | - Mariana El Hawa
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelly Rubeiz
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Li W, Feng Y, Feng Z, Wang L, Whiteway M, Lu H, Jiang Y. Pitavastatin Calcium Confers Fungicidal Properties to Fluconazole by Inhibiting Ubiquinone Biosynthesis and Generating Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:667. [PMID: 38929106 PMCID: PMC11200976 DOI: 10.3390/antiox13060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 μM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhe Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
3
|
Abstract
Fungal infections are estimated to be responsible for 1.5 million deaths annually. Global anti-microbial resistance is also observed for fungal pathogens, and scientists are looking for new antifungal agents to address this challenge. One potential strategy is to evaluate currently available drugs for their possible antifungal activity. One of the suggested drug classes are statins, which are commonly used to decrease plasma cholesterol and reduce cardiovascular risk associated with low density lipoprotein cholesterol (LDL-c). Statins are postulated to possess pleiotropic effects beyond cholesterol lowering; improving endothelial function, modulating inflammation, and potentially exerting anti-microbial effects. In this study, we reviewed in-vitro and in-vivo studies, as well as clinical reports pertaining to the antifungal efficacy of statins. In addition, we have addressed various modulators of statin anti-fungal activity and the potential mechanisms responsible for their anti-fungal effects. In general, statins do possess anti-fungal activity, targeting a broad spectrum of fungal organisms including human opportunistic pathogens such as Candida spp. and Zygomycetes, Dermatophytes, alimentary toxigenic species such as Aspergillus spp., and fungi found in device implants such as Saccharomyces cerevisiae. Statins have been shown to augment a number of antifungal drug classes, for example, the azoles and polyenes. Synthetic statins are generally considered more potent than the first generation of fungal metabolites. Fluvastatin is considered the most effective statin with the broadest and most potent fungal inhibitory activity, including fungicidal and/or fungistatic properties. This has been demonstrated with plasma concentrations that can easily be achieved in a clinical setting. Additionally, statins can potentiate the efficacy of available antifungal drugs in a synergistic fashion. Although only a limited number of animal and human studies have been reported to date, observational cohort studies have confirmed that patients using statins have a reduced risk of candidemia-related complications. Further studies are warranted to confirm our findings and expand current knowledge of the anti-fungal effects of statins.
Collapse
|
4
|
Cretton S, Dorsaz S, Azzollini A, Favre-Godal Q, Marcourt L, Ebrahimi SN, Voinesco F, Michellod E, Sanglard D, Gindro K, Wolfender JL, Cuendet M, Christen P. Antifungal Quinoline Alkaloids from Waltheria indica. JOURNAL OF NATURAL PRODUCTS 2016; 79:300-307. [PMID: 26848627 DOI: 10.1021/acs.jnatprod.5b00896] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemical investigation of a dichloromethane extract of the aerial parts of Waltheria indica led to the isolation and characterization of five polyhydroxymethoxyflavonoids, namely, oxyanin A (1), vitexicarpin (3), chrysosplenol E (4), flindulatin (5), 5-hydroxy-3,7,4'-trimethoxyflavone (6), and six quinolone alkaloids, waltheriones M-Q (2, 7, 8, 10, 11) and 5(R)-vanessine (9). Among these, compounds 2, 7, 8, 10, and 11 have not yet been described in the literature. Their chemical structures were established by means of spectroscopic data interpretation including (1)H and (13)C, HSQC, HMBC, COSY, and NOESY NMR experiments and UV, IR, and HRESIMS. The absolute configurations of the compounds were established by ECD. The isolated constituents and 10 additional quinoline alkaloids previously isolated from the roots of the plant were evaluated for their in vitro antifungal activity against the human fungal pathogen Candida albicans, and 10 compounds (7, 9, 11-16, 18, 21) showed growth inhibitory activity on both planktonic cells and biofilms (MIC ≤ 32 μg/mL). Their spectrum of activity against other pathogenic Candida species and their cytotoxicity against human HeLa cells were also determined. In addition, the cytological effect of the antifungal isolated compounds on the ultrastructure of C. albicans was evaluated by transmission electron microscopy.
Collapse
Affiliation(s)
- Sylvian Cretton
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Stéphane Dorsaz
- Institute of Microbiology, University of Lausanne and University Hospital Center , Lausanne, Switzerland
| | - Antonio Azzollini
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Quentin Favre-Godal
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University , G. C., Evin, Tehran, Iran
| | - Francine Voinesco
- Agroscope, Institute for Plant Production Sciences IPS, Mycology and Biotechnology , Route de Duiller 50, CP 1012, 1260 Nyon, Switzerland
| | - Emilie Michellod
- Agroscope, Institute for Plant Production Sciences IPS, Mycology and Biotechnology , Route de Duiller 50, CP 1012, 1260 Nyon, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center , Lausanne, Switzerland
| | - Katia Gindro
- Agroscope, Institute for Plant Production Sciences IPS, Mycology and Biotechnology , Route de Duiller 50, CP 1012, 1260 Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Philippe Christen
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Abstract
Fungal infections are increasing and their treatment is difficult, because the most widely used antifungal drugs are relatively toxic and have serious side effects. Therefore, interest has focused on safely applicable and clinically introduced non-antifungal drugs, which have potent antifungal activity. Statins were originally used as cholesterol lowering agents in human therapy, but recent studies demonstrated their in vitro antifungal activity against yeasts and filamentous fungi. This indicated their potential application, alone or in combination with other drugs, in the treatment of such diseases. Their effective concentrations are higher than their maximum achievable serum levels; therefore, the application of statins for the treatment of invasive fungal infections is only possible in combination with antifungal agents. These synergistic combinations establish a basis for a new safely applicable therapy. This review focuses on the antifungal activity of statins alone and in combination with antifungal and non-antifungal drugs, and their possible application in clinical therapy.
Collapse
|