1
|
Tactile learning transfer from the hand to the face but not to the forearm implies a special hand-face relationship. Sci Rep 2018; 8:11752. [PMID: 30082760 PMCID: PMC6079060 DOI: 10.1038/s41598-018-30183-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023] Open
Abstract
In the primary somatosensory cortex, large-scale cortical and perceptual changes have been demonstrated following input deprivation. Recently, we found that the cortical and perceptual changes induced by repetitive somatosensory stimulation (RSS) at a finger transfer to the face. However, whether such cross-border changes are specific to the face remains elusive. Here, we investigated whether RSS-induced acuity changes at the finger can also transfer to the forearm, which is the body part represented on the other side of the hand representation. Our results confirmed the transfer of tactile learning from the stimulated finger to the lip, but no significant changes were observed at the forearm. A second experiment revealed that the same regions on the forearm exhibited improved tactile acuity when RSS was applied there, excluding the possibility of low plastic ability at the arm representation. This provides also the first evidence that RSS can be efficient on body parts other than the hand. These results suggest that RSS-induced tactile learning transfers preferentially from the hand to the face rather than to the forearm. This specificity could arise from a stronger functional connectivity between the cortical hand and face representations, reflecting a fundamental coupling between these body parts.
Collapse
|
2
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
3
|
Paullus JR, Hickmott PW. Diverse excitatory and inhibitory synaptic plasticity outcomes in complex horizontal circuits near a functional border of adult neocortex. Brain Res 2011; 1416:10-25. [PMID: 21890112 DOI: 10.1016/j.brainres.2011.07.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/12/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022]
Abstract
The primary somatosensory cortex (SI) is topographically organized into a map of the body. This organization is dynamic, undergoing experience-dependent modifications throughout life. It has been hypothesized that excitatory and inhibitory synaptic plasticity of horizontal intracortical connections contributes to functional reorganization. However, very little is known about synaptic plasticity of these connections; particularly the characteristics of inhibitory synaptic plasticity, its relationship to excitatory synaptic plasticity, and their relationship to the functional organization of the cortex. To investigate this, we located the border between the forepaw and lower jaw representation of SI in vivo, and used whole cell-patch electrophysiology to record post-synaptic excitatory and inhibitory currents in complex horizontal connections in vitro. Connections that remained within the representation (continuous) and those that crossed from one representation to another (discontinuous) were stimulated differentially, allowing us to examine differences associated with the border. To induce synaptic plasticity, tetanic stimulation was applied to either continuous or discontinuous pathways. Tetanic stimulation induced diverse forms of excitatory and inhibitory synaptic plasticity, with LTP dominating for excitation and LTD dominating for inhibition. The border did not restrict plasticity in either case. In contrast, tetanization elicited LTP of monosynaptic inhibitory responses in continuous, but not discontinuous connections. These results demonstrate that continuous and discontinuous pathways are capable of diverse synaptic plasticity responses that are differentially inducible. Furthermore, continuous connections can undergo monosynaptic inhibitory LTP, independent of excitatory drive onto interneurons. Thus, coordinated excitatory and inhibitory synaptic plasticity of horizontal connections are capable of contributing to functional reorganization.
Collapse
Affiliation(s)
- Jeffrey R Paullus
- Interdepartmental Neuroscience Program and Center for Glial-Neuronal Interactions, University of California at Riverside, USA
| | | |
Collapse
|
4
|
Paullus JR, Pappademos MS, Nolen AM, Warmus BA, Hickmott PW. Bidirectional axonal plasticity during reorganization of adult rat primary somatosensory cortex. Brain Res 2011; 1387:46-60. [PMID: 21362411 DOI: 10.1016/j.brainres.2011.02.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/09/2011] [Accepted: 02/21/2011] [Indexed: 11/28/2022]
Abstract
Cortical sensory maps contain discrete functional subregions that are separated by borders that restrict tangential activity flow. Interestingly, the functional organization of border regions remains labile in adults, changing in an activity-dependent manner. Here, we investigated if axon remodeling contributes to this reorganization. We located the border between the forepaw and lower jaw representation (forepaw/lower jaw border,(1) FP/LJ border) in SI of adult rats, and used a retrograde axonal tracer (cholera toxin subunit B(2), Ctb) to determine if horizontal axonal projections change after different durations of forelimb denervation or sham-denervation. In sham-denervated animals, neurons close to the border had axonal projections oriented away from the border (axonal bias). Forelimb denervation resulted in a sustained change in border location and a significant reduction in the axonal bias at the original border after 6 weeks of denervation, but not after 4 or 12 weeks. The change in axonal bias was due to an increase in axons that cross the border at 6 weeks, followed by an apparent loss of these axons by 12 weeks. This suggests that bidirectional axonal rearrangements are associated with relatively long durations of reorganization and could contribute transiently to the maintenance of cortical reorganization.
Collapse
Affiliation(s)
- Jeffrey R Paullus
- Interdepartmental Neuroscience Program, University of California at Riverside, 900 University Ave. Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
5
|
Imbrosci B, Eysel UT, Mittmann T. Metaplasticity of horizontal connections in the vicinity of focal laser lesions in rat visual cortex. J Physiol 2010; 588:4695-703. [PMID: 20961999 DOI: 10.1113/jphysiol.2010.198192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Focal cortical injuries are accompanied by a reorganization of the adjacent neuronal networks. An increased synaptic plasticity has been suggested to mediate, at least in part, this functional reorganization. Previous studies showed an increased long-term potentiation (LTP) at synapses formed by ascending fibres projecting onto layers 2/3 pyramidal cells following lesions in rat visual cortex. This could be important to establish new functional connections within a vertical cortical column. Importantly, horizontal intracortical connections constitute an optimal substrate to mediate the functional reorganization across different cortical columns. However, so far little is known about their potential implication in the functional rewiring post-lesion. Here, we investigated possible alterations of synaptic plasticity of horizontal connections in layers 2/3 in an 'ex vivo-in vitro' model of focal laser lesion in rat visual cortex. LTP at these synapses was found to be enhanced post-lesion, whereas long-term depression (LTD) was impaired, revealing a metaplastic shift toward strengthening of these synapses. Furthermore, we disclosed a prolonged decay-time constant of NMDAR-dependent currents, which can contribute to the enhanced LTP. Taken together these data revealed that a laser lesion-induced focal damage of the visual cortex is accompanied by a facilitated potentiation of horizontal synaptic connections in the vicinity of the focal injury. This specific strengthening of synaptic plasticity at horizontal connections in layers 2/3 might be one important cellular mechanism to compensate focal injury-mediated dysfunction in the cerebral cortex.
Collapse
Affiliation(s)
- B Imbrosci
- Institute of Physiology and Pathophysiology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | |
Collapse
|