1
|
Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J, Devasahayam N, Mitchell JB, Krishna MC. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget 2018; 9:25089-25100. [PMID: 29861855 PMCID: PMC5982751 DOI: 10.18632/oncotarget.25317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
To examine the relationship between local oxygen partial pressure and energy metabolism in the tumor, electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) with hyperpolarized [1-13C] pyruvate were performed. SCCVII and HT29 solid tumors implanted in the mouse leg were imaged by EPRI using OX063, a paramagnetic probe and 13C-MRI using hyperpolarized [1-13C] pyruvate. Local partial oxygen pressure and pyruvate metabolism in the two tumor implants were examined. The effect of a single dose of 5-Gy irradiation on the pO2 and metabolism was also investigated by sequential imaging of EPRI and 13C-MRI in HT29 tumors. A phantom study using tubes filled with different concentration of [1-13C] pyruvate, [1-13C] lactate, and OX063 at different levels of oxygen confirmed the validity of this sequential imaging of EPRI and hyperpolarized 13C-MRI. In vivo studies revealed SCCVII tumor had a significantly larger hypoxic fraction (pO2 < 8 mmHg) compared to HT29 tumor. The flux of pyruvate-to-lactate conversion was also higher in SCCVII than HT29. The lactate-to-pyruvate ratio in hypoxic regions (pO2 < 8 mmHg) 24 hours after 5-Gy irradiation was significantly higher than those without irradiation (0.76 vs. 0.36) in HT29 tumor. The in vitro study showed an increase in extracellular acidification rate after irradiation. In conclusion, co-imaging of pO2 and pyruvate-to-lactate conversion kinetics successfully showed the local metabolic changes especially in hypoxic area induced by radiation therapy.
Collapse
Affiliation(s)
- Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Radiology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tatsuya Kawai
- Radiation Oncology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- MRI Research Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Faust O, Yu W, Rajendra Acharya U. The role of real-time in biomedical science: A meta-analysis on computational complexity, delay and speedup. Comput Biol Med 2015; 58:73-84. [DOI: 10.1016/j.compbiomed.2014.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/30/2014] [Indexed: 12/29/2022]
|
3
|
Abstract
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.
Collapse
|
4
|
Yasui H, Matsumoto S, Devasahayam N, Munasinghe JP, Choudhuri R, Saito K, Subramanian S, Mitchell JB, Krishna MC. Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice. Cancer Res 2010; 70:6427-36. [PMID: 20647318 DOI: 10.1158/0008-5472.can-10-1350] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumors exhibit fluctuations in blood flow that influence oxygen concentrations and therapeutic resistance. To assist therapeutic planning and improve prognosis, noninvasive dynamic imaging of spatial and temporal variations in oxygen partial pressure (pO(2)) would be useful. Here, we illustrate the use of pulsed electron paramagnetic resonance imaging (EPRI) as a novel imaging method to directly monitor fluctuations in oxygen concentrations in mouse models. A common resonator platform for both EPRI and magnetic resonance imaging (MRI) provided pO(2) maps with anatomic guidance and microvessel density. Oxygen images acquired every 3 minutes for a total of 30 minutes in two different tumor types revealed that fluctuation patterns in pO(2) are dependent on tumor size and tumor type. The magnitude of fluctuations in pO(2) in SCCVII tumors ranged between 2- to 18-fold, whereas the fluctuations in HT29 xenografts were of lower magnitude. Alternating breathing cycles with air or carbogen (95% O(2) plus 5% CO(2)) distinguished higher and lower sensitivity regions, which responded to carbogen, corresponding to cycling hypoxia and chronic hypoxia, respectively. Immunohistochemical analysis suggests that the fluctuation in pO(2) correlated with pericyte density rather than vascular density in the tumor. This EPRI technique, combined with MRI, may offer a powerful clinical tool to noninvasively detect variable oxygenation in tumors.
Collapse
Affiliation(s)
- Hironobu Yasui
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|