1
|
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS OMEGA 2022; 7:3470-3482. [PMID: 35128256 PMCID: PMC8811941 DOI: 10.1021/acsomega.1c05923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Institute
of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Marta Gómez-Muñoz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Shewit Kalayou
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- International
Center of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100 Nairobi, Kenya
| | - Tahira Riaz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Timo Lutter
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Coalition
for Epidemic Preparedness Innovations (CEPI), P.O. Box 123, Torshov, 0412 Oslo, Norway
| | - Markos Abebe
- Armauer
Hansen Research Institute, Jimma Road, P.O. Box 1005 Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
2
|
Pretomanid for tuberculosis treatment: an update for clinical purposes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100128. [PMID: 36105740 PMCID: PMC9461242 DOI: 10.1016/j.crphar.2022.100128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic determined a 10 years-set back in tuberculosis (TB) control programs. Recent advances in available therapies may help recover the time lost. While Linezolid (LZD) and Bedaquiline (BDQ), previously Group D second line drugs (SLDs) for TB, have been relocated to Group A, other drugs are currently being studied in regimens for drug resistant TB (DR-TB). Among these, Pretomanid (PA), a recently introduced antimycobacterial drug derived from nitroimidazole with both solid bactericidal and bacteriostatic effect, and with an excellent effectiveness and tolerability profile, is in the spotlight. Following promising data obtained from recently published and ongoing randomized controlled trials (RCTs), the World Health Organization (WHO) determined to include PA in its guidelines for the treatment of rifampicin-resistant (RR), multi drug resistant (MDR) and pre-extensively drug resistant TB (pre-XDR-TB) with BDQ, LZD and Moxifloxacine (MFX) in a 6-month regimen. Although further studies on the subject are needed, PA may also represent a treatment option for drug-susceptible TB (DS-TB), latent TB infection (LTBI) and non tuberculous mycobacteria (NTM). This narrative review aims to examine current implementation options and future possibilities for PA in the never-ending fight against TB.
Collapse
|
3
|
HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Proc Natl Acad Sci U S A 2021; 118:2006717118. [PMID: 33723035 DOI: 10.1073/pnas.2006717118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTPase high frequency of lysogenization X (HflX) is highly conserved in prokaryotes and acts as a ribosome-splitting factor as part of the heat shock response in Escherichia coli. Here we report that HflX produced by slow-growing Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a GTPase that plays a critical role in the pathogen's transition to a nonreplicating, drug-tolerant state in response to hypoxia. Indeed, HflX-deficient M. bovis BCG (KO) replicated markedly faster in the microaerophilic phase of a hypoxia model that resulted in premature entry into dormancy. The KO mutant displayed hallmarks of nonreplicating mycobacteria, including phenotypic drug resistance, altered morphology, low intracellular ATP levels, and overexpression of Dormancy (Dos) regulon proteins. Mice nasally infected with HflX KO mutant displayed increased bacterial burden in the lungs, spleen, and lymph nodes during the chronic phase of infection, consistent with the higher replication rate observed in vitro in microaerophilic conditions. Unlike fast growing mycobacteria, M. bovis BCG HlfX was not involved in antibiotic resistance under aerobic growth. Proteomics, pull-down, and ribo-sequencing approaches supported that mycobacterial HflX is a ribosome-binding protein that controls translational activity of the cell. With HflX fully conserved between M. bovis BCG and M. tuberculosis, our work provides further insights into the molecular mechanisms deployed by pathogenic mycobacteria to adapt to their hypoxic microenvironment.
Collapse
|
4
|
Narang A, Garima K, Porwal S, Bhandekar A, Shrivastava K, Giri A, Sharma NK, Bose M, Varma-Basil M. Potential impact of efflux pump genes in mediating rifampicin resistance in clinical isolates of Mycobacterium tuberculosis from India. PLoS One 2019; 14:e0223163. [PMID: 31557231 PMCID: PMC6762166 DOI: 10.1371/journal.pone.0223163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/12/2019] [Indexed: 01/16/2023] Open
Abstract
Despite the consideration of chromosomal mutations as the major cause of rifampicin (RIF) resistance in M. tuberculosis, the role of other mechanisms such as efflux pumps cannot be ruled out. We evaluated the role of four efflux pumps viz., MmpL2 (Rv0507), MmpL5 (Rv0676c), Rv0194 and Rv1250 in providing RIF resistance in M. tuberculosis. The real time expression of the efflux pumps was analyzed in 16 RIF resistant and 11 RIF susceptible clinical isolates of M. tuberculosis after exposure to RIF. Expression of efflux pumps in these isolates was also correlated with mutations in the rpoB gene and MICs of RIF in the presence and absence of efflux pump inhibitors. Under RIF stress, Rv0194 was induced in 8/16 (50%) RIF resistant and 2/11 (18%) RIF susceptible isolates; mmpL5 in 7/16 (44%) RIF resistant and 1/11 (9%) RIF susceptible isolates; Rv1250 in 4/16 (25%) RIF resistant and 2/11 (18%) RIF susceptible isolates; and mmpL2 was upregulated in 2/16 (12.5%) RIF resistant and 1/11 (9%) RIF susceptible isolates. This preliminary study did not find any association between Rv0194, MmpL2, MmpL5 and Rv1250 and RIF resistance. However, the overexpression of Rv0194 and mmpL5 in greater number of RIF resistant isolates as compared to RIF susceptible isolates and expression of Rv0194 in wild type (WT) resistant isolates suggests a need for further investigations.
Collapse
Affiliation(s)
- Anshika Narang
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kushal Garima
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Shraddha Porwal
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Archana Bhandekar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kamal Shrivastava
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Astha Giri
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Naresh Kumar Sharma
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Briffotaux J, Liu S, Gicquel B. Genome-Wide Transcriptional Responses of Mycobacterium to Antibiotics. Front Microbiol 2019; 10:249. [PMID: 30842759 PMCID: PMC6391361 DOI: 10.3389/fmicb.2019.00249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics can stimulate or depress gene expression in bacteria. The analysis of transcriptional responses of Mycobacterium to antimycobacterial compounds has improved our understanding of the mode of action of various drug classes and the efficacy and effect of such compounds on the global metabolism of Mycobacterium. This approach can provide new insights for known antibiotics, for example those currently used for tuberculosis treatment, as well as help to identify the mode of action and predict the targets of new compounds identified by whole-cell screening assays. In addition, changes in gene expression profiles after antimycobacterial treatment can provide information about the adaptive ability of bacteria to escape the effects of antibiotics and allow monitoring of the physiology of the bacteria during treatment. Genome-wide expression profiling also makes it possible to pinpoint genes differentially expressed between drug sensitive Mycobacterium and multidrug-resistant clinical isolates. Finally, genes involved in adaptive responses and drug tolerance could become new targets for improving the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Julien Briffotaux
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shengyuan Liu
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Brigitte Gicquel
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Sheen P, Requena D, Gushiken E, Gilman RH, Antiparra R, Lucero B, Lizárraga P, Cieza B, Roncal E, Grandjean L, Pain A, McNerney R, Clark TG, Moore D, Zimic M. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance. BMC Genomics 2017; 18:769. [PMID: 29020922 PMCID: PMC5637355 DOI: 10.1186/s12864-017-4146-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/02/2017] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear. RESULTS We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion. CONCLUSIONS These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.
Collapse
Affiliation(s)
- Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - David Requena
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Eduardo Gushiken
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Room 5515, Baltimore, MD 21205 USA
| | - Ricardo Antiparra
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Bryan Lucero
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Pilar Lizárraga
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Basilio Cieza
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Elisa Roncal
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| | - Louis Grandjean
- Department of Infection, Immunology and Rheumatology, Institute of Child Health, University College London, 30 Guilford St, London, WC1N 1EH UK
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT UK
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT UK
| | - David Moore
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT UK
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porras, 31 Lima, Peru
| |
Collapse
|
7
|
Chen X, Cheng HF, Zhou J, Chan CY, Lau KF, Tsui SKW, Au SWN. Structural basis of the PE-PPE protein interaction in Mycobacterium tuberculosis. J Biol Chem 2017; 292:16880-16890. [PMID: 28842489 DOI: 10.1074/jbc.m117.802645] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/16/2017] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has developed multiple strategies to adapt to the human host. The five type VII secretion systems, ESX-1-5, direct the export of many virulence-promoting protein effectors across the complex mycobacterial cell wall. One class of ESX substrates is the PE-PPE family of proteins, which is unique to mycobacteria and essential for infection, antigenic variation, and host-pathogen interactions. The genome of Mtb encodes 168 PE-PPE proteins. Many of them are thought to be secreted through ESX-5 secretion system and to function in pairs. However, understanding of the specific pairing of PE-PPE proteins and their structure-function relationship is limited by the challenging purification of many PE-PPE proteins, and our knowledge of the PE-PPE interactions therefore has been restricted to the PE25-PPE41 pair and its complex with the ESX-5 secretion system chaperone EspG5. Here, we report the crystal structure of a new PE-PPE pair, PE8-PPE15, in complex with EspG5. Our structure revealed that the EspG5-binding sites on PPE15 are relatively conserved among Mtb PPE proteins, suggesting that EspG5-PPE15 represents a more typical model for EspG5-PPE interactions than EspG5-PPE41. A structural comparison with the PE25-PPE41 complex disclosed conformational changes in the four-helix bundle structure and a unique binding mode in the PE8-PPE15 pair. Moreover, homology-modeling and mutagenesis studies further delineated the molecular determinants of the specific PE-PPE interactions. These findings help develop an atomic algorithm of ESX-5 substrate recognition and PE-PPE pairing.
Collapse
Affiliation(s)
- Xin Chen
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | - Hiu-Fu Cheng
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | - Junwei Zhou
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | | | - Kwok-Fai Lau
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | | | - Shannon Wing-Ngor Au
- From the Centre for Protein Science and Crystallography, School of Life Sciences,
| |
Collapse
|
8
|
Jhingan GD, Kumari S, Jamwal SV, Kalam H, Arora D, Jain N, Kumaar LK, Samal A, Rao KVS, Kumar D, Nandicoori VK. Comparative Proteomic Analyses of Avirulent, Virulent, and Clinical Strains of Mycobacterium tuberculosis Identify Strain-specific Patterns. J Biol Chem 2016; 291:14257-14273. [PMID: 27151218 PMCID: PMC4933181 DOI: 10.1074/jbc.m115.666123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 03/17/2016] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis is an adaptable intracellular pathogen, existing in both dormant as well as active disease-causing states. Here, we report systematic proteomic analyses of four strains, H37Ra, H37Rv, and clinical isolates BND and JAL, to determine the differences in protein expression patterns that contribute to their virulence and drug resistance. Resolution of lysates of the four strains by liquid chromatography, coupled to mass spectrometry analysis, identified a total of 2161 protein groups covering ∼54% of the predicted M. tuberculosis proteome. Label-free quantification analysis of the data revealed 257 differentially expressed protein groups. The differentially expressed protein groups could be classified into seven K-means cluster bins, which broadly delineated strain-specific variations. Analysis of the data for possible mechanisms responsible for drug resistance phenotype of JAL suggested that it could be due to a combination of overexpression of proteins implicated in drug resistance and the other factors. Expression pattern analyses of transcription factors and their downstream targets demonstrated substantial differential modulation in JAL, suggesting a complex regulatory mechanism. Results showed distinct variations in the protein expression patterns of Esx and mce1 operon proteins in JAL and BND strains, respectively. Abrogating higher levels of ESAT6, an important Esx protein known to be critical for virulence, in the JAL strain diminished its virulence, although it had marginal impact on the other strains. Taken together, this study reveals that strain-specific variations in protein expression patterns have a meaningful impact on the biology of the pathogen.
Collapse
Affiliation(s)
- Gagan Deep Jhingan
- National Institute of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | - Sangeeta Kumari
- National Institute of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | - Shilpa V Jamwal
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana 121004
| | - Haroon Kalam
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | - Divya Arora
- National Institute of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | - Neharika Jain
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | | | - Areejit Samal
- Institute of Mathematical Sciences, Chennai 600113, India
| | - Kanury V S Rao
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067
| | - Vinay Kumar Nandicoori
- National Institute of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067.
| |
Collapse
|
9
|
Zheng F, Xie J. The interaction topology of Mycobacterium tuberculosis genes response to capreomycin and novel clues for more drug targets. J Cell Biochem 2012; 112:2716-20. [PMID: 21678479 DOI: 10.1002/jcb.23232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The resurgence of tuberculosis (TB) and emergence of multidrug-resistant TB (MDR-TB) are significant obstacles to stop TB treatment. Capreomycin (CPM) is regarded as an ideal second-line treatment for TB as well as for MDR-TB. However, the inexorable emergence of capreomycin resistant TB cases accentuates the urgent need for more detailed characterization of CPM targets. Most of these are single gene mutation, such as those involved in the complex formation of ribosomal 30S initiation, inhibit protein synthesis, affect 50S ribosomal protein L10, control transcription and translation of operon rpIJL-rpoBC. A new paradigm integrating gene, small metabolites, protein and underlying signaling pathway to shed light on the physiology, pathogenesis, and network of pathogen response is emerging. This model holds great promise to unravel the intricacy of drug action. However, to our knowledge, no such work regarding Mycobacterium tuberculosis response to capreomycin exposure was ever reported. We employed the data mining to construct an interaction topology of M. tuberculosis genes response to capreomycin. Most valuable genes were summarized for further experimental validation based on this topology. Dampening the virulence factors and respiratory of M. tuberculosis might be the new targets of CPM beyond Rv1364c, pe_pgrs38, pe_pgrs51 which are the salient nodes of the network and represent most promising new capreomycin targets meriting further exploration. This work will facilitate further investigation of capreomycin targets against M. tuberculosis and be conducive to novel TB drug discovery.
Collapse
Affiliation(s)
- Fei Zheng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three GorgesArea, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
10
|
McEvoy CRE, Cloete R, Müller B, Schürch AC, van Helden PD, Gagneux S, Warren RM, Gey van Pittius NC. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One 2012; 7:e30593. [PMID: 22496726 PMCID: PMC3319526 DOI: 10.1371/journal.pone.0030593] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of "classical" antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design.
Collapse
Affiliation(s)
- Christopher R E McEvoy
- Department of Science and Technology, Medical Research Council Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Tools for effective TB control have been available for years. Case finding, active medications, case management and directly observed therapy are the foundations for the management of TB. The current TB epidemic, centered in resource-limited settings is fueled by the HIV-1 epidemic. Lack of ability to diagnose and treat drug-resistant TB has led to development of more extensive patterns of resistance. Among the currently available drugs, there is reason to hope that rifamycins paired with fluoroquinolones will lead to shorter treatment regimens for drug-susceptible TB. As the result of novel public-private collaborations and investments of resources, new drugs are being developed. These include TMC207, already shown to have activity early in the treatment of multidrug-resistant TB and others that are likely to be active against persistor organisms, and have the prospect to dramatically shorten treatment courses for active and latent TB. Given that these drugs have novel mechanisms of action, combinations have the prospect to be highly active even against multidrug-resistant organisms.
Collapse
Affiliation(s)
- Eric Leibert
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | | |
Collapse
|