1
|
Marinescu L, Motelica L, Ficai D, Ficai A, Oprea OC, Andronescu E, Holban AM. A Two-Step Surface Modification Methodology for the Advanced Protection of a Stone Surface. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:68. [PMID: 38202523 PMCID: PMC10780400 DOI: 10.3390/nano14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The biodeterioration of the natural surface on monuments, historical buildings, and even public claddings brings to the attention of researchers and historians the issues of conservation and protection. Natural stones undergo changes in their appearance, being subjected to deterioration due to climatic variations and the destructive action of biological systems interfering with and living on them, leading to ongoing challenges in the protection of the exposed surfaces. Nanotechnology, through silver nanoparticles with strong antimicrobial effects, can provide solutions for protecting natural surfaces using specific coupling agents tailored to each substrate. In this work, surfaces of two common types of natural stone, frequently encountered in landscaping and finishing works, were modified using siloxane coupling agents with thiol groups. Through these agents, silver nanoparticles (AgNPs) were fixed, exhibiting distinct characteristics, and subjected to antimicrobial analysis. This study presents a comparative analysis of the efficiency of coupling agents that can be applied to a natural surface with porous structures, when combined with laboratory-obtained silver nanoparticles, in reducing the formation of microbial biofilms, which are a main trigger for stone biodeterioration.
Collapse
Affiliation(s)
- Liliana Marinescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (L.M.); (A.F.)
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (L.M.); (A.F.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (L.M.); (A.F.)
- Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania;
- Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (L.M.); (A.F.)
- Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania;
| |
Collapse
|
2
|
Flocco CG, Methner A, Burkart F, Geppert A, Overmann J. Touching the (almost) untouchable: a minimally invasive workflow for microbiological and biomolecular analyses of cultural heritage objects. Front Microbiol 2023; 14:1197837. [PMID: 37601377 PMCID: PMC10435870 DOI: 10.3389/fmicb.2023.1197837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Microbiological and biomolecular approaches to cultural heritage research have expanded the established research horizon from the prevalent focus on the cultural objects' conservation and human health protection to the relatively recent applications to provenance inquiry and assessment of environmental impacts in a global context of a changing climate. Standard microbiology and molecular biology methods developed for other materials, specimens, and contexts could, in principle, be applied to cultural heritage research. However, given certain characteristics common to several heritage objects-such as uniqueness, fragility, high value, and restricted access, tailored approaches are required. In addition, samples of heritage objects may yield low microbial biomass, rendering them highly susceptible to cross-contamination. Therefore, dedicated methodology addressing these limitations and operational hurdles is needed. Here, we review the main experimental challenges and propose a standardized workflow to study the microbiome of cultural heritage objects, illustrated by the exploration of bacterial taxa. The methodology was developed targeting the challenging side of the spectrum of cultural heritage objects, such as the delicate written record, while retaining flexibility to adapt and/or upscale it to heritage artifacts of a more robust constitution or larger dimensions. We hope this tailored review and workflow will facilitate the interdisciplinary inquiry and interactions among the cultural heritage research community.
Collapse
Affiliation(s)
- Cecilia G. Flocco
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Anika Methner
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Franziska Burkart
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Alicia Geppert
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ- German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
- Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Martínez-Martínez S, Pérez-Villarejo L, Eliche-Quesada D, Sánchez-Soto PJ. New Types and Dosages for the Manufacture of Low-Energy Cements from Raw Materials and Industrial Waste under the Principles of the Circular Economy and Low-Carbon Economy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:802. [PMID: 36676541 PMCID: PMC9863668 DOI: 10.3390/ma16020802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The cement manufacturing industry is one of the main greenhouse gas emission producers and also consumes a large quantity of raw materials. It is essential to reduce these emissions in order to comply with the Paris Agreement and the principles of the circular economy. The objective of this research was to develop different types of cement clinker blends using industrial waste and innovative design to produce low-energy cement. Several types of waste have been studied as alternative raw materials. Their main characteristics have been analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD), Attenuated total reflectance Fourier trans-form infrared spectroscopy (ATR-FTIR), thermal analysis (TG-DTG-DSC) and scanning electron microscopy and energy dispersive X-ray spectroscopy analysis (SEM-EDS). The results obtained from the experimental work carried out in this research focused on the study of crude blends for low-energy cement created from industrial waste. The effect of the addition of different industrial waste types, as a substitution for raw materials, in the production of low-energy cement with high dicalcium silicate content has been investigated. Thus, the dosage design has been performed using modified Bogue equations and quality indexes (LSF, AM, and SM). The calculations of both the modified Bogue equations and quality indexes necessitate knowledge of the weight percentages of CaO, SiO2, Al2O3, and Fe2O3, determined via XRF. In this theoretical design of the different blends, it has been established that a dicalcium silicate ratio of 60-65 wt % and an LSF of 78-83% as the limit are values common to all of them. The calculation basis for the crude blends has been based on calcined materials. Therefore, the chemical composition was established, following this premise. Thus, it was possible to develop cement clinker blends with compositions of 50 wt % and 100 wt % using industrial wastes. This research has shown that the clinkerization process is one of the main options for the valorization of waste and its consideration for inclusion as a raw material within the circularity of the cement industry's production process. Thus, waste is used as a raw material for the production of a more useful substance, taking into account the fundamental principles of the circular economy.
Collapse
Affiliation(s)
- Sergio Martínez-Martínez
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, 41092 Sevilla, Spain
| | - Luis Pérez-Villarejo
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Dolores Eliche-Quesada
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Pedro J. Sánchez-Soto
- Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
4
|
A Study on Correggio Wall Paintings: Characterization of Technique and Materials of Abbey Church of S. Giovanni Evangelista in Parma, Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study deals with the materials of the sub-arch painting of the Del Bono Chapel of the Abbey Church of S. Giovanni Evangelista in Parma, Italy, datable to around 1523. The artist is Antonio Allegri, known as Correggio (1489–1534), who is considered to be one of the greatest painters of the 16th century. Micro-Raman spectroscopy, micro-Fourier transform infrared spectroscopy and gas chromatography coupled with mass spectrometry were used as the main techniques to identify the pigments and binding media. The analysis enabled us to identify the pigments which were characteristic of the epoch. Correggio’s palette was composed by mineral pigments—sometimes expensive ones such as lapis lazuli, azurite and cinnabar—together with a wide range of earths, or by synthetic pigments like smalt blue. From the amino acid content determination, it was shown that, in the samples containing lazurite, smalt, hematite, green earth and goethite, the protein fraction was attributable to the presence of a mixture of egg and animal glue, from which the use of the a secco technique could be assumed, with pigments that did not need organic binding media on the wall. For the gilding sample, the study found that Au foil had been applied on a brown background (oil-based missione).
Collapse
|
5
|
Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. MICROMACHINES 2022; 13:mi13020187. [PMID: 35208311 PMCID: PMC8879834 DOI: 10.3390/mi13020187] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Since microorganisms are evolving rapidly, there is a growing need for a new, fast, and precise technique to analyse blood samples and distinguish healthy from pathological samples. Fourier Transform Infrared (FTIR) spectroscopy can provide information related to the biochemical composition and how it changes when a pathological state arises. FTIR spectroscopy has undergone rapid development over the last decades with a promise of easier, faster, and more impartial diagnoses within the biomedical field. However, thus far only a limited number of studies have addressed the use of FTIR spectroscopy in this field. This paper describes the main concepts related to FTIR and presents the latest research focusing on FTIR spectroscopy technology and its integration in lab-on-a-chip devices and their applications in the biological field. This review presents the potential use of FTIR to distinguish between healthy and pathological samples, with examples of early cancer detection, human immunodeficiency virus (HIV) detection, and routine blood analysis, among others. Finally, the study also reflects on the features of FTIR technology that can be applied in a lab-on-a-chip format and further developed for small healthcare devices that can be used for point-of-care monitoring purposes. To the best of the authors’ knowledge, no other published study has reviewed these topics. Therefore, this analysis and its results will fill this research gap.
Collapse
|
6
|
Physical, Chemical and Geotechnical Characterization of Wet Flue Gas Desulfurization Gypsum and Its Potential Application as Building Materials. BUILDINGS 2021. [DOI: 10.3390/buildings11110500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In South Africa, coal represents the primary source of energy used for electricity generation. Coal power plants use the wet flue gas desulfurization (WFGD) process to remove sulfur dioxide (SO2) from their flue gas. However, this technology produces a large amount of synthetic gypsum, resulting in waste disposal and environmental pollution. This study investigated the physical, chemical and geotechnical properties of WFGD gypsum and its potential application to develop cement-free bricks. WFGD gypsum was collected from a coal power plant in South Africa. It was found that the principal oxides of WFGD gypsum were sulfur trioxide (SO3) and calcium oxide (CaO), which represented more than 90% of the total weight. Calcium sulfate (CaSO4) and calcium di aluminate (CA2) were the predominant minerals in the raw material. The density of the WFGD gypsum was 2.43 g/cm3. The maximum dry density and optimum moisture content values were 1425 kg/m3 and 18.5%, respectively. WFGD gypsum had a liquid limit of 51% but did not display any plasticity characteristics. The optimum curing temperature of gypsum bricks was 40 °C. WFGD gypsum-based bricks exhibited compressive strength of up to 2.3 MPa and a density of about 28% less than that of typical clay bricks. Additionally, there was no significant decrease in compressive strength after seven wet/dry cycles. These results show that WFGD gypsum could be used to produce lightweight building materials with low strength requirements.
Collapse
|
7
|
Bakshi P, Pappu A, Bharti DK, Patidar R. Accelerated weathering performance of injection moulded PP and LDPE composites reinforced with calcium rich waste resources. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Effect of a SO2 Rich Atmosphere on Tempera Paint Mock-Ups. Part 1: Accelerated Aging of Smalt and Lapis Lazuli-Based Paints. MINERALS 2020. [DOI: 10.3390/min10050427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The behavior of historic tempera paints exposed to pollutant gases is an important issue when developing conservation strategies. In this work, binary tempera paint mock-ups that were made with either smalt or lapis lazuli pigments mixed with either rabbit glue or egg yolk binders were exposed to an SO2 accelerated aging test in order to find out more about the forms and mechanisms of alteration resulting from pigment-binder interaction. To this end, spectrophotometry, hyperspectral image analysis, and profilometry were used to study macro-scale, physical changes taking place on the surface of the paints, affecting color, gloss, reflectance, and roughness. Likewise, chemical and mineralogical changes were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (ATR-FTIR), polarized light microscopy (PLM), and scanning electron microscopy with micro-analysis (SEM-EDS), which was also used to visualize micro-texture changes in the paints. The smalt-based tempera showed a higher degree of deterioration than the lapis lazuli-based tempera, in particular a notable whitening related to the precipitation of sulfate-rich salts and to binder and pigment chemical alterations. Moreover, whereas aged egg yolk-based paints showed visible color change due to damage to the oily binder and the pigments, the most evident change in rabbit glue-based paints was binder loss. The alteration suffered by the pigments varied in line with their composition; thus, smalt (blue cobalt-containing glass) grains were more sensitive to SO2 exposure than lapis lazuli-(Na,Ca)8[(S,Cl,SO4,OH)2|(Al6Si6O24)]-crystals. In the smalt grains, the SO2 test caused K+ leaching from the glass matrix, which was detected by means of K/Co ratios, but the lazurite crystals (main component of lapis lazuli) were unaffected (regardless of the binder used in the tempera). The most likely source of the crystallized sulfate rich salts were the impurities that were detected in association with the natural lapis lazuli pigment, i.e., calcite and diopside. Indeed, the precipitation of efflorescences is the main cause of the optical changes found in the smalt- and lapis lazuli-based tempera, in addition to the physical-chemical damage to the binders. The information reported here would be useful for preventive conservation, as well as for art restorers, who are planning work on paintings in which paints of this kind were used.
Collapse
|
9
|
Teece BL, George SC, Agbaje OBA, Jacquet SM, Brock GA. Mars Rover Techniques and Lower/Middle Cambrian Microbialites from South Australia: Construction, Biofacies, and Biogeochemistry. ASTROBIOLOGY 2020; 20:637-657. [PMID: 32159385 DOI: 10.1089/ast.2019.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Perseverance rover (Mars 2020) is equipped with an instrumental and analytical payload capable of identifying a broad range of organic molecules in geological samples. To determine the efficacy of these analytical techniques in recognizing important ecological and environmental signals in the rock record, this study utilized analogous equipment, including gas chromatography/mass spectrometry, Raman spectroscopy, X-ray fluorescence (XRF), Fourier transform infrared spectroscopy, along with macroscopic and petrographic observations, to examine early-middle Cambrian microbialites from the Arrowie Basin, South Australia. Morphological and petrographic observations of these carbonate successions reveal evidence of hypersaline-restricted environments. Microbialites have undergone moderate diagenesis, as supported by XRF data that show mineral assemblages, including celestine and the illitization of smectite. Raman spectral data, carbon preference indices of ∼1, and the methylphenanthrene index place the samples in the prehnite/pumpellyite metamorphic facies. Pristane and phytane are the only biomarkers that were detected in the least thermally mature samples. This research demonstrates a multitechnique approach that can yield significant geological, depositional, paleobiological, and diagenetic information that has important implications for planning future astrobiological exploration.
Collapse
Affiliation(s)
- Bronwyn L Teece
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Simon C George
- Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia
| | - Oluwatoosin Bunmi A Agbaje
- Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| | - Sarah M Jacquet
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Department of Geological Sciences, University of Missouri, Columbia, Missouri
| | - Glenn A Brock
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
10
|
“Argento Deaurato” or “Argento Biancheggiato”? A Rare and Interesting Case of Silver Background in Italian Painting of the XIII Century. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The painting depicting the “Virgin with the Child and two angels” by a Tuscan anonymous artist of the XIII century, has raised great interest regarding the execution technique including the use of silver, applied on wood as a background. An in-depth investigation was carried out especially concerning the burnishing process of the silver leaves as well as a detailed inspection of the nature of the organic compounds over the metal leaf and the degradation products of the silver layer. To this aim, a multianalytical approach was used including UV–VIS microscopy along with an Ultra-High-Resolution Scanning Electron Microscopy (UHR-SEM), as well as Fourier Transform Infrared (FTIR), fluorescence and micro-Raman spectroscopies. As a result, the presence of an oil-resin varnish layer in the uppermost layer and a wax-protein layer between the varnish and the metal layer as well as the evidence that the silver leaf was applied with high accuracy directly to the preparation layer, were clearly demonstrated. Furthermore, degradation products of the silver leaf were identified as sulphides, chlorides, and oxides. The holistic approach herein adopted enabled a step forward in the knowledge of the 13th century silver leaf gilding technique, adding value to the originality of this artwork. In this respect, the scientific evidence led to the assumption that likely this painting originally showed a silver-colored background (“argento biancheggiato”) as compared to the initial theory of a case of “argento deaurato”.
Collapse
|
11
|
Advanced methods for the analysis of Roman wall paintings: elemental and molecular detection by means of synchrotron FT-IR and SEM micro-imaging spectroscopy. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00888-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage Studies. SUSTAINABILITY 2020. [DOI: 10.3390/su12041409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A range of sophisticated imaging techniques have been developed in recent years that can reveal the surface structure of cultural heritage objects with varying precision. In combination with various spectroscopic methods, they allow the study of the chemical composition of the object; thus, conclusions can be drawn about the origin of the object or its initial components, method, or time of creation, authenticity, mechanisms of degradation, and ways of further conservation. At present, different techniques can be applied to a wide range of cultural heritage objects, such as varnishes, paintings, archaeological objects, binding media, paper-based documents, parchments, marbles, frescoes, as well as various objects made of leather, fabric, stone, ceramics and glass, wood, or metal. One of the main needs in the study of cultural heritage (CH) is the transportability/portability of the research equipment, since many pieces under investigation cannot be moved to the laboratory, either because of their size, inseparability (for example, frescoes on walls, mural paintings in caves), or the threat of damage. In this work, we briefly overview the main optical- and laser-based methods used for the study of cultural heritage objects indicating the scope of their application, and we focus on the applications of non-linear microscopic methods for the investigation of a series of artifacts. We also discuss all the requirements for the construction of a prototype transportable non-linear optical system that will be used as a novel diagnostic tool for in situ studies of CH assets. The availability of such a transportable workstation will significantly improve the study and characterization of various types of CH objects and will constitute an extremely useful diagnostic tool for heritage scientists dealing with a variety of investigations.
Collapse
|
13
|
Bertasa M, Possenti E, Botteon A, Conti C, Sansonetti A, Fontana R, Striova J, Sali D. Close to the diffraction limit in high resolution ATR FTIR mapping: demonstration on micrometric multi-layered art systems. Analyst 2018; 142:4801-4811. [PMID: 29168522 DOI: 10.1039/c7an00873b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper is aimed at demonstrating the potentiality of high resolution Attenuated Total Reflection Fourier Transform Infrared micro-mapping (micro-ATR-FTIR) to reconstruct the images of micrometric multi-layered systems. This method can be an effective analytical alternative when the layer thickness requires high lateral resolution, and fluorescence or thermal effects prevent the deployment of conventional analytical techniques such as micro-Raman spectroscopy. This study demonstrates the high micro-ATR-FTIR setup performances in terms of lateral resolution, spectral quality and chemical image contrast using a new laboratory instrument equipped with a single element detector. The method has been first validated on mock-ups and then successfully applied on cross-sectional samples from real artworks: Leonardo da Vinci's mural painting, characterised by a few micrometers thin sequence of organic and inorganic layers, and an outdoor marble statue, with a complex sequence of decay products on its surface. This study paves the way to a new investigation modality of micrometric systems, combining high lateral resolution with excellent spectral quality, essential in the field of Cultural Heritage as well as in the wider area of materials and forensic sciences.
Collapse
Affiliation(s)
- Moira Bertasa
- Consiglio Nazionale delle Ricerche, Istituto per la Conservazione e la Valorizzazione dei Beni Culturali (ICVBC), Via Cozzi 53, 20125, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pozo-Antonio JS, Fernández-Rodríguez S, Rocha CSA, Carrera F, Rivas T. Marking petroglyphs with calcite and gypsum-based chalks: Interaction with granite under different simulated conditions and the effectiveness and harmfulness of cleaning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:81-93. [PMID: 28846907 DOI: 10.1016/j.scitotenv.2017.08.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Marking petroglyphs with chalk is a common practice to enhance them for documentation and reproduction. Although this procedure has started to be less frequently used, there is no knowledge about the interaction between the rock engravings nor about the effectiveness achieved by the common cleaning procedures of such markers considering the chalk extraction and the induced damage to the rock. This study evaluates the interaction between two chalks of different composition (calcite and gypsum) and a granite on which the majority of NW Iberian Peninsula-petroglyphs are carved. Granitic samples marked with these chalks were subjected to artificial rain events and high temperatures (700°C) related to fires. After each aging test, chemical and physical modifications on the rock were analysed by means of stereomicroscopy, x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and colour spectrophotometry. Moreover, the evaluation of the effectiveness and harmfulness of several mechanical and chemical cleaning procedures commonly used in the field of cultural heritage conservation was carried out. Both chalks remained at different extent on the surface after the artificial rain events. Water would promote a different penetration-depth of the chalks into the stone, depending on their solubility. High temperatures led to mineral phase transformations of the chalks influencing the interaction with the rock. Regarding cleaning effectiveness, despite a few chalk remains were found in all the cleanings, chemical methods showed higher effectiveness than mechanical procedures even though some of them leave chemical contamination. Benzalkonium chloride can be considered as the cleaner with the best results to extract both types of chalk on granite.
Collapse
Affiliation(s)
- J S Pozo-Antonio
- Departamento de Enxeñaría dos Recursos Naturais e Medio Ambiente, Escola Superior de Minas e Enerxía, Universidade de Vigo, 36310 Vigo, Spain; CERENA/CEPGIST, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - S Fernández-Rodríguez
- Departamento de Enxeñaría dos Recursos Naturais e Medio Ambiente, Escola Superior de Minas e Enerxía, Universidade de Vigo, 36310 Vigo, Spain
| | - C S A Rocha
- CERENA/CEPGIST, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - F Carrera
- Escola Superior de Conservación e Restauración de Bens Culturais de Galicia, 36002 Pontevedra, Spain
| | - T Rivas
- Departamento de Enxeñaría dos Recursos Naturais e Medio Ambiente, Escola Superior de Minas e Enerxía, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
15
|
Vieira Ferreira LF, Ferreira DP, Conceição DS, Santos LF, Pereira MFC, Casimiro TM, Ferreira Machado I. Portuguese tin-glazed earthenware from the 17th century. Part 2: A spectroscopic characterization of pigments, glazes and pastes of the three main production centers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:285-294. [PMID: 25965511 DOI: 10.1016/j.saa.2015.04.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/26/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Sherds representative of the three Portuguese faience production centers of the 17th century - Lisbon, Coimbra and Vila Nova were studied with the use of mostly non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE) or X-ray fluorescence emission (XRF). X-ray diffraction (XRD) experiments were also performed. The obtained results evidence a clear similarity in the pastes of the pottery produced Vila Nova and some of the ceramic pastes from Lisbon, in accordance with documental sources that described the use of Lisbon clays by Vila Nova potters, at least since mid 17th century. Quartz and Gehlenite are the main components of the Lisbon's pastes, but differences between the ceramic pastes were detected pointing out to the use of several clay sources. The spectroscopic trend exhibited Coimbra's pottery is remarkably different, Quartz and Diopside being the major components of these pastes, enabling one to well define a pattern for these ceramic bodies. The blue pigment from the Lisbon samples is a cobalt oxide that exists in the silicate glassy matrix, which enables the formation of detectable cobalt silicate microcrystals in most productions of the second half of the 17th century. No micro-Raman cobalt blue signature could be detected in the Vila Nova and Coimbra blue glazes. This is in accordance with the lower kiln temperatures in these two production centers and with Co(2+) ions dispersed in the silicate matrix. In all cases the white glaze is obtained with the use of tin oxide. Hausmannite was detected as the manganese oxide mineral used to produce the purple glaze (wine color "vinoso") in Lisbon.
Collapse
Affiliation(s)
- L F Vieira Ferreira
- CQFM - Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - D P Ferreira
- CQFM - Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - D S Conceição
- CQFM - Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - L F Santos
- Departamento Engenharia Química and ICEMS, Instituto Superior Técnico Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M F C Pereira
- CEPGIST - Centro de Petrologia e Geoquímica/CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - T M Casimiro
- Instituto de Arqueologia e Paleociências da Universidade Nova de Lisboa, Departamento de História, Avenida de Berna 26-C, 1069-061 Lisboa, Portugal
| | - I Ferreira Machado
- CQFM - Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Technology and Design, School of Technology and Management, Polytechnic Institute of Portalegre, P-7300-110 Portalegre, Portugal
| |
Collapse
|
16
|
Ruffolo SA, Comite V, La Russa MF, Belfiore CM, Barca D, Bonazza A, Crisci GM, Pezzino A, Sabbioni C. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:157-166. [PMID: 25260161 DOI: 10.1016/j.scitotenv.2014.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
The Cathedral of Seville is one of the most important buildings in the whole of southern Spain. It suffers, like most of the historical buildings located in urban environments, from several degradation phenomena related to the high pollution level. Undoubtedly, the formation of black crusts plays a crucial role in the decay of the stone materials belonging to the church. Their formation occurs mainly on carbonate building materials, whose interaction with a sulfur oxide-enriched atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, forms the black crusts on the stone surface. To better understand the composition and the formation dynamics of this degradation product and to identify the pollutant sources and evaluate their impact on the stone material, an analytical study was carried out on the black crust samples collected from different areas of the building. For a complete characterization of the black crusts, several techniques were used, including laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy, micro infrared spectroscopy, optical and scanning electron microscopy. This battery of tests provided information about the nature and distribution of the mineralogical phases and the elements within the crusts and the crust-substrate interface, contributing to the identification of the major pollution sources responsible for the deterioration of the monument over time. In addition, the results revealed a relation among the height of sampling, the surface exposure and the concentration of heavy metals. Finally, information has been provided about the origin of the concentration gradients of some metals.
Collapse
Affiliation(s)
- Silvestro A Ruffolo
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Via Pietro Bucci 87036, Arcavacata di Rende, CS, Italy.
| | - Valeria Comite
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Via Pietro Bucci 87036, Arcavacata di Rende, CS, Italy; Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Sezione di Scienze della Terra, Università di Catania, Corso Italia 57, 95129 Catania, Italy
| | - Mauro F La Russa
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Via Pietro Bucci 87036, Arcavacata di Rende, CS, Italy
| | - Cristina M Belfiore
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Via Pietro Bucci 87036, Arcavacata di Rende, CS, Italy; Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Sezione di Scienze della Terra, Università di Catania, Corso Italia 57, 95129 Catania, Italy
| | - Donatella Barca
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Via Pietro Bucci 87036, Arcavacata di Rende, CS, Italy
| | - Alessandra Bonazza
- Istituto di Scienze dell'Atmosfera e del Clima, ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Gino M Crisci
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Via Pietro Bucci 87036, Arcavacata di Rende, CS, Italy
| | - Antonino Pezzino
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Sezione di Scienze della Terra, Università di Catania, Corso Italia 57, 95129 Catania, Italy
| | - Cristina Sabbioni
- Istituto di Scienze dell'Atmosfera e del Clima, ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
17
|
Poli T, Chiantore O, Giovagnoli A, Piccirillo A. FTIR imaging investigation in MIR and in an enlarged MIR–NIR spectral range. Anal Bioanal Chem 2012; 402:2977-84. [DOI: 10.1007/s00216-012-5765-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 11/28/2022]
|