1
|
Zhang X, Zhang X, Li X, Bao H, Li G, Li N, Li H, Dou J. NUCKS1 Acts as a Promising Novel Biomarker for the Prognosis of Patients with Hepatocellular Carcinoma. Cancer Biother Radiopharm 2023; 38:720-725. [PMID: 33601927 DOI: 10.1089/cbr.2020.4226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in some tumors, including hepatocellular carcinoma (HCC). However, its clinical significance in HCC prognosis is still unclear. The aim of this study was to explore the expression and prognostic value of NUCKS1 in HCC. Materials and Methods: Quantitative real-time polymerase chain reaction was used to detect relative expression of NUCKS1 mRNA in HCC tissues and corresponding adjacent normal tissues. The relationship between NUCKS1 expression and clinical characteristics of patients was analyzed by χ2 test. Kaplan-Meier method and Cox regression analysis were applied to estimate prognostic value of NUCKS1 in HCC. Results: Compared with normal ones, the expression of NUCKS1 mRNA was significantly upregulated in HCC tissues (p < 0.001). Besides, NUCKS1 expression was closely associated with tumor differentiation, tumor node metastasis stage, vascular invasion, and metastasis (p < 0.05). Kaplan-Meier analysis revealed that overall survival was obviously longer in HCC patients with low expression of NUCKS1 than those with high NUCKS1 expression (log rank test, p = 0.001). NUCKS1 might be an independent prognostic factor for HCC patients (HR = 1.905, 95% CI = 1.106-3.283, p = 0.020). Conclusions: NUCKS1 may be correlated with the progression of HCC and serve as a potential predictive factor for the prognosis of this disease.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Xianjun Zhang
- Department of Gynaecology, Harrison International Peace Hospital, Hengshui, China
| | - Xinguo Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Hongbing Bao
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Guang Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Ning Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Hengli Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
3
|
Ma H, Xu J, Zhao R, Qi Y, Ji Y, Ma K. Upregulation of NUCKS1 in Lung Adenocarcinoma is Associated with a Poor Prognosis. Cancer Invest 2021; 39:435-444. [PMID: 33683970 DOI: 10.1080/07357907.2021.1899199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To evaluate the clinicopathologic features and survival analysis of NUCKS1 expression in human lung adenocarcinoma (LA), we used bioinformatic methods to obtain NUCKS1 gene status and correlated it with prognosis in LA. We compared NUCKS1 expression in 70 samples of LA with intrinsically normal lung alveoli (NLA) by immunohistochemistry, and analyzed their clinicopathologic features. NUCKS1 was overexpressed in LA components(LACs) relative to NLA, and was significantly correlated to patient with 5-year disease-free survival (DFS) and overall survival(OS). Elevated NUCKS1 expression in LACs was shown to be an independent prognostic indicator for OS and a biomarker in LA.
Collapse
Affiliation(s)
- Hongfei Ma
- Department of Thoracic Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China.,Department of Thoracic Surgery, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Jing Xu
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Ruixia Zhao
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yongyun Qi
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Yong Ji
- Medical Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Shenzhen, China
| | - Kai Ma
- Department of Thoracic Surgery, The Affiliated Hospital, Qingdao University, Qingdao, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
4
|
Altered transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of tumor invasion. Sci Rep 2019; 9:10986. [PMID: 31358880 PMCID: PMC6662741 DOI: 10.1038/s41598-019-47360-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/24/2019] [Indexed: 01/24/2023] Open
Abstract
We have studied differentially regulated nuclear proteome of the clinical tissue specimens of glioblastoma (GBM, WHO Grade IV) and lower grades of gliomas (Grade II and III) using high resolution mass spectrometry- based quantitative proteomics approach. The results showed altered expression of many regulatory proteins from the nucleus such as DNA binding proteins, transcription and post transcriptional processing factors and also included enrichment of nuclear proteins that are targets of granzyme signaling – an immune surveillance pathway. Protein - protein interaction network analysis using integrated proteomics and transcriptomics data of transcription factors and proteins for cell invasion process (drawn from another GBM dataset) revealed YBX1, a ubiquitous RNA and DNA-binding protein and a transcription factor, as a key interactor of major cell invasion-associated proteins from GBM. To verify the regulatory link between them, the co-expression of YBX1 and six of the interacting proteins (EGFR, MAPK1, CD44, SOX2, TNC and MMP13) involved in cell invasion network was examined by immunohistochemistry on tissue micro arrays. Our analysis suggests YBX1 as a potential regulator of these key molecules involved in tumor invasion and thus as a promising target for development of new therapeutic strategies for GBM.
Collapse
|
5
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
6
|
Shi C, Qin L, Gao H, Gu L, Yang C, Liu H, Liu T. NUCKS nuclear elevated expression indicates progression and prognosis of ovarian cancer. Tumour Biol 2017; 39:1010428317714631. [PMID: 28877654 DOI: 10.1177/1010428317714631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NUCKS (nuclear, casein kinase, and cyclin-dependent kinase substrate) is implicated in the tumorigenesis of several human malignancies, but its role in ovarian cancer remains unknown. We aim to investigate NUCKS expression and its clinical significance in ovarian cancer. The messenger RNA expression of NUCKS was determined in normal and malignant ovarian tissues using quantitative polymerase chain reaction assay. Immunohistochemistry was applied to detect the status of NUCKS protein expression in 121 ovarian cancer tissues. NUCKS protein high expression was detected in 52 (43.0%) of 121 patients. NUCKS messenger RNA expression was gradually upregulated in non-metastatic ovarian cancers ( n = 20), metastatic ovarian cancers ( n = 20), and its matched metastatic lesions ( n = 20) in comparison with that in normal ovarian tissues ( n = 10; p < 0.05). Elevated expression of NUCKS in ovarian cancer was associated significantly with the Federation of Gynecology and Obstetrics stage ( p = 0.037), histological grade ( p = 0.003), residual disease ( p = 0.013), lymph node metastasis ( p = 0.002), response to chemotherapy ( p < 0.001), and recurrence ( p = 0.013). In the multivariate Cox analysis, NUCKS expression was an independent prognostic marker for overall survival and disease-free survival in ovarian cancer with p values of <0.001 for both. Especially, NUCKS overexpression had prognostic potential for overall survival and disease-free survival ( p < 0.001 for both) in advanced ovarian cancers and only for disease-free survival in early ovarian cancers ( p = 0.017). Our data suggest that NUCKS overexpression may contribute to progression and poor prognosis in ovarian cancer especially in advanced ovarian cancer.
Collapse
Affiliation(s)
- Ce Shi
- 1 Department of Leukemia, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ling Qin
- 2 Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongyu Gao
- 3 Department of Gastroenterologic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Gu
- 4 Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Yang
- 4 Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hebing Liu
- 5 Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tianbo Liu
- 4 Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Poon MW, Jiang D, Qin P, Zhang Y, Qiu B, Chanda S, Tergaonkar V, Li Q, Wong IY, Yu Z, Tse HF, Wong DSH, Lian Q. Inhibition of NUCKS Facilitates Corneal Recovery Following Alkali Burn. Sci Rep 2017; 7:41224. [PMID: 28106169 PMCID: PMC5247723 DOI: 10.1038/srep41224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Corneal wound healing involves a complex cascade of cytokine-controlled cellular events, including inflammatory and angiogenesis responses that are regulated by transcriptional chromatin remodeling. Nuclear Ubiquitous Casein and cyclin-dependent Kinase Substrate (NUCKS) is a key chromatin modifier and transcriptional regulator of metabolic signaling. In this study, we investigated the role of NUCKS in corneal wound healing by comparing its effects on corneal alkali burn in NUCKS knockout (NKO) and NUCKS wild-type (NWT) mice. Our data showed that following alkali-injury, inhibition of NUCKS (NKO) accelerated ocular resurfacing and suppressed neovascularization; the cytokine profile of alkali burned corneas in NKO mice showed suppressed expression of inflammation cytokines (IL1A & IL1B); upregulated expression of antiangiogenic factor (Pigment Epithelium-derived Factor; PEDF); and downregulated expression of angiogenic factor (Vascular Endothelial Growth Factor, VEGF); in vitro, following LPS-induced NFκB activation, NKO corneal cells showed reduced expression of IL6, IP10 and TNFα. In vitro, corneal epithelial cells showed reduced NF-κb activation on silencing of NUCKS and corresponding NFκB-mediated cytokine expression was reduced. Here, we illustrate that inhibition of NUCKS played a role in cytokine modulation and facilitated corneal recovery. This reveals a potential new effective strategy for ocular burn treatment.
Collapse
Affiliation(s)
- Ming-Wai Poon
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Dan Jiang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Peng Qin
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yuelin Zhang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Beiying Qiu
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Sumit Chanda
- Infectious &Inflammatory Disease Center, the Burnham Institute for Medical Research, La Jolla, California, U.S
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Qing Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Ian Y Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - David S H Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Grundt K, Thiede B, Østvold AC. Identification of kinases phosphorylating 13 sites in the nuclear, DNA-binding protein NUCKS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:359-369. [PMID: 28011258 DOI: 10.1016/j.bbapap.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
NUCKS is a vertebrate specific, nuclear and DNA-binding phospho protein. The protein is highly expressed in rapidly dividing cells, and is overexpressed in a number of cancer tissues. The phosphorylation of NUCKS is cell cycle and DNA-damage regulated, but little is known about the responsible kinases. By utilizing in vitro and in vivo phosphorylation assays using isolated NUCKS as well as synthetic NUCKS-derived peptides in combination with mass spectrometry, phosphopeptide mapping, phosphphoamino acid analyses, phosphospecific antibodies and the use of specific kinase inhibitors, we found that NUCKS is phosphorylated on 11 sites by CK2. At least 7 of the CK2 sites are phosphorylated in vivo. We also found that NUCKS is phosphorylated on two sites by ATM kinase and DNA-PK in vitro, and is phosphorylated in vivo by ATM kinase in γ-irradiated cells. All together, we identified three kinases phosphorylating 13 out of 39 in vivo phosphorylated sites in mammalian NUCKS. The identification of CK2 and PIKK kinases as kinases phosphorylating NUCKS in vivo provide further evidence for the involvement of NUCKS in cell cycle control and DNA repair.
Collapse
Affiliation(s)
- Kirsten Grundt
- University of Oslo, Institute of Basic Medical Sciences, Department of Biochemistry, P.O. Box 1112, Blindern N-0317, Oslo, Norway
| | - Bernd Thiede
- University of Oslo, Department of Biosciences, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Anne Carine Østvold
- University of Oslo, Institute of Basic Medical Sciences, Department of Biochemistry, P.O. Box 1112, Blindern N-0317, Oslo, Norway.
| |
Collapse
|
9
|
High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer. Cancer Lett 2016; 382:77-85. [DOI: 10.1016/j.canlet.2016.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
|
10
|
Wiśniewski JR, Mann M. A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting. J Proteome Res 2016; 15:2321-6. [PMID: 27297043 DOI: 10.1021/acs.jproteome.6b00403] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proteomics and other protein-based analysis methods such as Western blotting all face the challenge of discriminating changes in the levels of proteins of interest from inadvertent changes in the amount loaded for analysis. Mass-spectrometry-based proteomics can now estimate the relative and absolute amounts of thousands of proteins across diverse biological systems. We reasoned that this new technology could prove useful for selection of very stably expressed proteins that could serve as better loading controls than those traditionally employed. Large-scale proteomic analyses of SDS lysates of cultured cells and tissues revealed deglycase DJ-1 as the protein with the lowest variability in abundance among different cell types in human, mouse, and amphibian cells. The protein constitutes 0.069 ± 0.017% of total cellular protein and occurs at a specific concentration of 34.6 ± 8.7 pmol/mg of total protein. Since DJ-1 is ubiquitous and therefore easily detectable with several peptides, it can be helpful in normalization of proteomic data sets. In addition, DJ-1 appears to be an advantageous loading control for Western blot that is superior to those used commonly used, allowing comparisons between tissues and cells originating from evolutionarily distant vertebrate species. Notably, this is not possible by the detection and quantitation of housekeeping proteins, which are often used in the Western blot technique. The approach introduced here can be applied to select the most appropriate loading controls for MS-based proteomics or Western blotting in any biological system.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Biochemical Proteomics Group, ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry , 82152 Martinsried, Germany
| | - Matthias Mann
- Biochemical Proteomics Group, ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry , 82152 Martinsried, Germany
| |
Collapse
|
11
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Liu T, Tan S, Xu Y, Meng F, Yang C, Lou G. Increased NUCKS expression is a risk factor for poor prognosis and recurrence in endometrial cancer. Am J Cancer Res 2015; 5:3659-3667. [PMID: 26885454 PMCID: PMC4731639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023] Open
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) was reported to function as a potential biomarker in various tumors. Thus, we aimed to explore the expression of NUCKS in endometrial cancer (EC) and its clinical significance using quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). qRT-PCR results showed that NUCKS mRNA expression gradually elevated from normal endometrium to atypical endometrial hyperplasia, and to EC (P < 0.05 between each group). NUCKS overexpression was strongly associated with FIGO stage (P = 0.002), histologic grade (P = 0.029), lympho-vascular space involvement (P = 0.014), lymph node metastasis (P = 0.019), and recurrence (P < 0.001). Cox multivariate analysis revealed that NUCKS overexpression was an independent factor for overall survival and recurrence-free survival (P < 0.001 for both). Multivariate logistic regression suggested that recurrence was independently correlated with NUCKS overexpresion (P = 0.039), FIGO stage (P = 0.002), and lymph node metastasis (P = 0.002). In summary, NUCKS overexpression may function as a potential biomarker for prognosis especially for recurrence in ECs.
Collapse
Affiliation(s)
- Tianbo Liu
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University Haping Road 150, Nangang District, Harbin 150081, China
| | - Shu Tan
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University Haping Road 150, Nangang District, Harbin 150081, China
| | - Ye Xu
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University Haping Road 150, Nangang District, Harbin 150081, China
| | - Fanling Meng
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University Haping Road 150, Nangang District, Harbin 150081, China
| | - Chang Yang
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University Haping Road 150, Nangang District, Harbin 150081, China
| | - Ge Lou
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University Haping Road 150, Nangang District, Harbin 150081, China
| |
Collapse
|
13
|
Woźniak M, Duś-Szachniewicz K, Ziółkowski P. Insulin-Like Growth Factor-2 Is Induced Following 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in SW620 Human Colon Cancer Cell Line. Int J Mol Sci 2015; 16:23615-29. [PMID: 26445041 PMCID: PMC4632717 DOI: 10.3390/ijms161023615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wrocław 50-368, Poland.
| | | | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wrocław 50-368, Poland.
| |
Collapse
|
14
|
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer. MICROARRAYS 2015; 4:287-310. [PMID: 26388997 PMCID: PMC4573573 DOI: 10.3390/microarrays4020287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Collapse
|
15
|
Wiśniewski JR, Gizak A, Rakus D. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways. J Proteome Res 2015; 14:3263-73. [DOI: 10.1021/acs.jproteome.5b00276] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacek R. Wiśniewski
- Biochemical
Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Agnieszka Gizak
- Department
of Animal Molecular Physiology, Wroclaw University, PL-50205 Wroclaw, Poland
| | - Dariusz Rakus
- Department
of Animal Molecular Physiology, Wroclaw University, PL-50205 Wroclaw, Poland
| |
Collapse
|
16
|
Abstract
Nuclear, casein kinase and cyclin-dependent kinase substrate (NUCKS), a protein similar to the HMG (high-mobility group) protein family, is one of the most modified proteins in the mammalian proteome. Although very little is known about the biological roles of NUCKS, emerging clinical evidence suggests that this protein can be a biomarker and therapeutic target in various human ailments, including several types of cancer. An inverse correlation between NUCKS protein levels and body mass index in humans has also been observed. Depletion of NUCKS in mice has been reported to lead to obesity and impaired glucose homoeostasis. Genome-wide genomic and proteomic approaches have revealed that NUCKS is a chromatin regulator that affects transcription. The time is now ripe for further understanding of the role of this novel biomarker of cancer and the metabolic syndrome, and how its sundry modifications can affect its function. Such studies could reveal how NUCKS could be a link between physiological cues and human ailments.
Collapse
|
17
|
Rakus D, Gizak A, Deshmukh A, Wiśniewski JR. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle. J Proteome Res 2015; 14:1400-11. [PMID: 25597705 DOI: 10.1021/pr5010357] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles. Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process such as glycolysis, free fatty acid catabolism, Krebs cycle, or oxidative phosphorylation. These differences are in a good agreement with the well-established biochemical picture of the muscle types. We show a correlation between maximal activity and the enzyme titer, suggesting that change in enzyme concentration is a good proxy for its catalytic potential in vivo. As a consequence, proteomic profiling of enzyme titers can be used to monitor metabolic changes in cells. Additionally, quantitative data of structural proteins allowed studying muscle type specific cell architecture and its remodeling. The presented proteomic approach can be applied to study metabolism in any other tissue or cell line.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | | | | | | |
Collapse
|
18
|
The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLoS One 2014; 9:e106973. [PMID: 25222612 PMCID: PMC4164521 DOI: 10.1371/journal.pone.0106973] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/04/2014] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. RESULTS Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. SUMMARY We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.
Collapse
|
19
|
Symonowicz K, Duś-Szachniewicz K, Woźniak M, Murawski M, Kołodziej P, Osiecka B, Jurczyszyn K, Ziółkowski P. Immunohistochemical study of nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 in invasive breast carcinoma of no special type. Exp Ther Med 2014; 8:1039-1046. [PMID: 25187794 PMCID: PMC4151634 DOI: 10.3892/etm.2014.1847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to investigate the immunohistochemical expression of nuclear ubiquitous casein and cyclin-dependent kinases substrate 1 (NUCKS1) in invasive breast carcinoma of no special type, in association with clinicopathological characteristics, including the tumor grade, frequency of lymph node involvement and distant metastasis. In addition, associations between NUCKS1 and other tumor subtype markers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), Ki-67 and cytokeratin 5/6 (CK 5/6), were investigated. NUCKS1 expression was shown to be associated with the formation of distant metastases and lymph node involvement. Furthermore, an association between the presence of NUCKS1 and histological grading was observed. The results confirmed that the expression of NUCKS1 in low grade invasive breast carcinoma of no special type was significantly less common compared with cases of high grade carcinoma. With regard to the additional tumor subtype markers, NUCKS1 expression was demonstrated to be significantly associated with Ki-67 and CK 5/6; however, no association was identified with ER, PR and HER2. Therefore, NUCKS1 may be a novel prognostic marker in the histopathological evaluation of invasive breast carcinoma of no special type.
Collapse
Affiliation(s)
- Krzysztof Symonowicz
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | | | - Marta Woźniak
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Marek Murawski
- Department of Gynecology and Obstetrics, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Paweł Kołodziej
- Division of Pathology, Sokołowski Regional Hospital, Wałbrzych, Lower Silesia 58-309, Poland
| | - Beata Osiecka
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Kamil Jurczyszyn
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| |
Collapse
|
20
|
Yang M, Wang X, Zhao Q, Liu T, Yao G, Chen W, Li Z, Huang X, Zhang Y. Combined evaluation of the expression of NUCKS and Ki-67 proteins as independent prognostic factors for patients with gastric adenocarcinoma. Tumour Biol 2014; 35:7505-12. [DOI: 10.1007/s13277-014-1880-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022] Open
|
21
|
Sahasrabuddhe NA, Barbhuiya MA, Bhunia S, Subbannayya T, Gowda H, Advani J, Shrivastav BR, Navani S, Leal P, Roa JC, Chaerkady R, Gupta S, Chatterjee A, Pandey A, Tiwari PK. Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics. Biochem Biophys Res Commun 2014; 446:863-9. [PMID: 24657443 DOI: 10.1016/j.bbrc.2014.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/11/2023]
Abstract
Gallbladder cancer is an uncommon but lethal malignancy with particularly high incidence in Chile, India, Japan and China. There is a paucity of unbiased large-scale studies investigating molecular basis of gallbladder cancer. To systematically identify differentially regulated proteins in gallbladder cancer, iTRAQ-based quantitative proteomics of gallbladder cancer was carried out using Fourier transform high resolution mass spectrometry. Of the 2575 proteins identified, proteins upregulated in gallbladder cancer included several lysosomal proteins such as prosaposin, cathepsin Z and cathepsin H. Downregulated proteins included serine protease HTRA1 and transgelin, which have been reported to be downregulated in several other cancers. Novel biomarker candidates including prosaposin and transgelin were validated to be upregulated and downregulated, respectively, in gallbladder cancer using tissue microarrays. Our study provides the first large scale proteomic characterization of gallbladder cancer which will serve as a resource for future discovery of biomarkers for gallbladder cancer.
Collapse
Affiliation(s)
| | - Mustafa A Barbhuiya
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474011, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Shushruta Bhunia
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474011, India
| | - Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Amrita School of Biotechnology, Amrita University, Kollam, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | | | | | - Pamela Leal
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Universidad de La Frontera, CEGIN-BIOREN, Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Raghothama Chaerkady
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sanjeev Gupta
- Cancer Hospital and Research Institute, Gwalior, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pramod K Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474011, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
22
|
Drosos Y, Kouloukoussa M, Ostvold AC, Havaki S, Katsantoni E, Marinos E, Aleporou-Marinou V. Dynamic expression of the vertebrate-specific protein Nucks during rodent embryonic development. Gene Expr Patterns 2013; 14:19-29. [PMID: 24140890 DOI: 10.1016/j.gep.2013.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/15/2022]
Abstract
The nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS) is a highly phosphorylated nuclear protein that is overexpressed in many types of cancer. The flexibility of NUCKS and its extensive posttranslational modifications indicate that it is multifunctional, and its expression in most cell types suggests a housekeeping function. However, spatiotemporal expression of the Nucks protein during rodent development has not been reported. Thus, we investigated the expression of both the Nucks mRNA and protein during rat and mouse development by immunohistochemistry, in situ hybridization, Western immunoblotting, and reverse-transcription PCR analysis. We also used BLAST analysis against expressed sequence tag databases to determine whether a NUCKS homologue is expressed in invertebrate organisms. We found that Nucks expression increased during the initial stages of embryonic development, and then gradually decreased until birth in all tissues except the nervous tissue and muscle fibers. Interestingly, the expression of Nucks was very strong in migrating neural crest cells at E13.5 and ectoderm-derived tissues. In most tissues analyzed, the levels of Nucks correlated with the levels of Bax and activated caspase-3, which are indicative of apoptosis. Moreover, Nucks was upregulated very early during neuronal apoptosis in vitro. Expression analysis revealed that no transcript with close homology to the Nucks gene was present in invertebrates. The expression of Nucks in both proliferating and quiescent cells and its correlation with Bax levels and apoptosis strongly suggest that Nucks plays complex roles in cell homeostasis. Furthermore, the lack of homology in invertebrate organisms indicates a specific role for Nucks in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece.
| | - Mirsini Kouloukoussa
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Anne Carine Ostvold
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Sophia Havaki
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Eleni Katsantoni
- Hematology/Oncology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelos Marinos
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Vassiliki Aleporou-Marinou
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece
| |
Collapse
|
23
|
Serum aminoacylase-1 is a novel biomarker with potential prognostic utility for long-term outcome in patients with delayed graft function following renal transplantation. Kidney Int 2013; 84:1214-25. [PMID: 23739232 PMCID: PMC3898105 DOI: 10.1038/ki.2013.200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 12/28/2022]
Abstract
Early identification and prognostic stratification of delayed graft function following renal transplantation has significant potential to improve outcome. Mass spectrometry analysis of serum samples, before and on day 2 post transplant from five patients with delayed graft function and five with an uncomplicated transplant, identified aminoacylase-1 (ACY-1) as a potential outcome biomarker. Following assay development, analysis of longitudinal samples from an initial validation cohort of 55 patients confirmed that the ACY-1 level on day 1 or 2 was a moderate predictor of delayed graft function, similar to serum creatinine, complementing the strongest predictor cystatin C. A further validation cohort of 194 patients confirmed this association with area under ROC curves (95% CI) for day 1 serum (138 patients) of 0.74 (0.67-0.85) for ACY-1, 0.9 (0.84-0.95) for cystatin C, and 0.93 (0.88-0.97) for both combined. Significant differences in serum ACY-1 levels were apparent between delayed, slow, and immediate graft function. Analysis of long-term follow-up for 54 patients with delayed graft function showed a highly significant association between day 1 or 3 serum ACY-1 and dialysis-free survival, mainly associated with the donor-brain-dead transplant type. Thus, proteomic analysis provides novel insights into the potential clinical utility of serum ACY-1 levels immediately post transplantation, enabling subdivision of patients with delayed graft function in terms of long-term outcome. Our study requires independent confirmation.
Collapse
|
24
|
Immunocytochemical studies on the nuclear ubiquitous casein and cyclin-dependent kinases substrate following 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 cells. Photodiagnosis Photodyn Ther 2013; 10:518-25. [PMID: 24284105 DOI: 10.1016/j.pdpdt.2013.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent data indicates that nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) may play role in tumor growth. In present study authors examined whether photodynamic therapy with 5-aminolevulinic acid (5-ALA) induces NUCKS expression in breast cancer cell line, MCF-7. METHODS In the experiment concentration of 5-ALA was 6.5mM. Excitation wavelength was 630 ± 20 nm, total light dose of light 5 or 10 J/cm(2) and irradiance 60 mW/cm(2) was used. Cells were collected at established time points and Western blot and immunocytochemical studies were performed using antibody against NUCKS. RESULTS Studies proved strong cytotoxic effects in cells following PDT with 6.5mM of precursor and 10 J/cm(2). Western blot analysis revealed the strongest expression of NUCKS at 7h after PDT. At next time points, 18 and 24h, expression of NUCKS decreased and became similar to that of control group. Further immunocytochemical studies showed very strong expression of NUCKS following PDT with 5-ALA and light irradiation of 5 J/cm(2). Early, at 0 h, that expression was predominantly seen in nuclei, while at 7h expression of NUCKS was observed in disseminated manner within entire cells in both nuclei and cytoplasm, with prevalence of cytoplasmic staining. CONCLUSIONS Authors suggest that NUCKS is involved in cellular responses following PDT, and since parallel induction of NUCKS and proapoptotic marker Bax and inhibition of anti-apoptotic Bcl-2 was observed, this protein might also be involved in induction of apoptosis following PDT.
Collapse
|
25
|
Sánchez-Peña ML, Isaza CE, Pérez-Morales J, Rodríguez-Padilla C, Castro JM, Cabrera-Ríos M. Identification of potential biomarkers from microarray experiments using multiple criteria optimization. Cancer Med 2013; 2:253-65. [PMID: 23634293 PMCID: PMC3639664 DOI: 10.1002/cam4.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization procedure to compare different experiments is no longer necessary.
Collapse
Affiliation(s)
- Matilde L Sánchez-Peña
- Bio IE Lab, Industrial Engineering Department, University of Puerto Rico at Mayaguez, Mayagüez, Puerto Rico
| | | | | | | | | | | |
Collapse
|
26
|
Ali NA, Molloy MP. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Proteomics 2011; 11:3390-401. [PMID: 21751366 DOI: 10.1002/pmic.201100036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF-β signaling pathway; however, reports suggest that TGF-β can activate other cellular pathways independent of Smad4. By investigating the TGF-β-regulated phosphoproteome, we aimed to uncover new functions controlled by TGF-β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)-labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF-β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF-β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin-dependent kinases substrate, hepatoma-derived growth factor and cell division kinases amongst others were induced following TGF-β stimulation, while the phosphorylation of TRAF2 and NCK-interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF-β-modulated phosphorylation responses in colon carcinoma cells.
Collapse
Affiliation(s)
- Naveid A Ali
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | |
Collapse
|
27
|
Wiśniewski JR, Ostasiewicz P, Mann M. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 2011; 10:3040-9. [PMID: 21526778 DOI: 10.1021/pr200019m] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteomic analysis of samples isolated by laser capture microdissection from clinical specimens requires sample preparation and fractionation methods suitable for small amounts of protein. Here we describe a streamlined filter-aided sample preparation (FASP) workflow that allows efficient analysis of lysates from low numbers of cells. Addition of carrier substances such as polyethylene glycol or dextran to the processed samples improves the peptide yields in the low to submicrogram range. In a single LC-MS/MS run, analyses of 500, 1000, and 3000 cells allowed identification of 905, 1536, and 2055 proteins, respectively. Incorporation of an additional SAX fractionation step at somewhat higher amounts enabled the analysis of formalin fixed and paraffin embedded human tissues prepared by LCM to a depth of 3600-4400 proteins per single experiment. We applied this workflow to compare archival neoplastic and matched normal colonic mucosa cancer specimens for three patients. Label-free quantification of more than 6000 proteins verified this technology through the differential expression of 30 known colon cancer markers. These included Carcino-Embryonic Antigen (CEA), the most widely used colon cancer marker, complement decay accelerating factor (DAF, CD55) and Metastasis-associated in colon cancer protein 1 (MACC1). Concordant with literature knowledge, mucin 1 was overexpressed and mucin 2 underexpressed in all three patients. These results show that FASP is suitable for the low level analysis of microdissected tissue and that it has the potential for exploration of clinical samples for biomarker and drug target discovery.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
28
|
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder. In most instances, PD is thought to result from a complex interaction between multiple genetic and environmental factors, though rare monogenic forms of the disease do exist. Mutations in 6 genes (SNCA, LRRK2, PRKN, DJ1, PINK1, and ATP13A2) have conclusively been shown to cause familial parkinsonism. In addition, common variation in 3 genes (MAPT, LRRK2, and SNCA) and loss-of-function mutations in GBA have been well-validated as susceptibility factors for PD. The function of these genes and their contribution to PD pathogenesis remain to be fully elucidated. The prevalence, incidence, clinical manifestations, and genetic components of PD are discussed in this review.
Collapse
Affiliation(s)
- Lynn M Bekris
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | |
Collapse
|