1
|
Li Z, Wang X, Zhang W, Yang W, Xu B, Hu W. Excretory/Secretory Products from Schistosoma japonicum Eggs Alleviate Ovalbumin-Induced Allergic Airway Inflammation. PLoS Negl Trop Dis 2023; 17:e0011625. [PMID: 37788409 PMCID: PMC10547495 DOI: 10.1371/journal.pntd.0011625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION Excretory/secretory products (ESPs) derived from helminths have been reported to effectively control allergic inflammation, which have better therapeutic prospects than live parasite infections. However, it remains unknown whether ESPs from schistosome eggs can protect against allergies, despite reports alleging that schistosome infection could alleviate disordered allergic inflammation. METHOD In the present study, we investigated the protective effects of ESPs from Schistosoma japonicum eggs (ESP-SJE) on asthmatic inflammation. Firstly, we successfully established an allergic airway inflammation model in mice by alum-adjuvanted ovalbumin (OVA) sensitization and challenge. ESP-SJE were administered intraperitoneally on days -1 and 13 (before sensitization), on day 20 (before challenge), and on days 21-24 (challenge phase). RESULTS The results showed that ESP-SJE treatment significantly reduced the infiltration of inflammatory cells, especially eosinophils into the lung tissue, inhibited the production of the total and OVA-specific IgE during OVA-sensitized and -challenged phases, respectively, and suppressed the secretion of Th2-type inflammatory cytokines (IL-4). Additionally, ESP-SJE treatment significantly upregulated the regulatory T cells (Tregs) in the lung tissue during OVA challenge. Furthermore, using liquid chromatography-mass spectrometry analysis and Treg induction experiments in vitro, we might identify nine potential therapeutic proteins against allergic inflammation in ESP-SJE. The targets of these candidate proteins included glutathione S-transferase, egg protein CP422 precursor, tubulin alpha-2/alpha-4 chain, actin-2, T-complex protein 1 subunit beta, histone H₄, whey acidic protein core region, and molecular chaperone HtpG. CONCLUSION Taken together, the results discussed herein demonstrated that ESP-SJE could significantly alleviate OVA-induced asthmatic inflammation in a murine model, which might be mediated by the upregulation of Treg in lung tissues that may be induced by the potential modulatory proteins. Therefore, potential proteins in ESP-SJE might be the best candidates to be tested for therapeutic application of asthma, thus pointing out to a possible new therapy for allergic airway inflammation.
Collapse
Affiliation(s)
- Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, P. R. China
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Xiaoling Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
2
|
Mu Y, McManus DP, Hou N, Cai P. Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front Immunol 2021; 12:619776. [PMID: 33692793 PMCID: PMC7937812 DOI: 10.3389/fimmu.2021.619776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Tang X, Hu W, Lv Y, Zhang W, Sun T, Jiang Y, Zhan X, Zhou S. A Polysaccharide from Amusium Pleuronectes Combined with Praziquantel Treatment Ameliorates Hepatic Fibrosis in Schistosoma Japonicum-Infected Mice. Med Sci Monit 2018; 24:1597-1603. [PMID: 29550831 PMCID: PMC5870401 DOI: 10.12659/msm.909320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Polysaccharides from bivalves have multiple bioactivities in various aspects of biology. However, the role of a polysaccharide derived from Amusium pleuronectes on potential hepatoprotective effects remains unclear. Material/Methods A water-soluble polysaccharide was isolated from Amusium pleuronectes (APS-1) using ultrasound-assisted hot-water extraction. The molecular weight of APS-1 was approximately 11.7 kDa and was determined by calibration with dextran. APS-1 was analyzed by high-performance liquid chromatography (HPLC), and mainly consisted of a uniform glucose polymer. The protective effect of APS-1 on Schistosoma japonicum-induced liver fibrosis was investigated in a mouse model. Results Treatment with APS-1 increased serum levels of interleukin (IL)-12 and interferon (IFN)-γ, increased superoxide dismutase (SOD) activity, and decreased levels of IL-13 and IL-5, and hyaluronidase activity. Moreover, immunohistochemical analysis revealed that the collagen content of hepatic tissue of APS-1-treated mice, including that of collagen I, II, and IV, was dramatically decreased. Furthermore, our data showed that combined treatment of APS-1 with praziquantel had more pronounced effects than treatment with either APS-1 or praziquantel alone. Conclusions Our findings suggest that the treatment using APS-1 in combination with praziquantel attenuated S. japonicum egg-induced hepatic fibrosis, and possessed potent hepatoprotective activity.
Collapse
Affiliation(s)
- Xiaoniu Tang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Wei Hu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yechao Lv
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Wenqi Zhang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Tian Sun
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuxin Jiang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Xiaodong Zhan
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Shulin Zhou
- School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China (mainland).,Anhui Provincial Key Laboratory of Bioactive Macromolecules, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
4
|
Farwa A, He C, Xia L, Zhou H. Immune modulation of Th1, Th2, and T-reg transcriptional factors differing from cytokine levels in Schistosoma japonicum infection. Parasitol Res 2017; 117:115-126. [PMID: 29188369 DOI: 10.1007/s00436-017-5678-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
Abstract
In spite of long-term integrated control programs for Schistosoma japonicum infection in China, the infection is still persistent due to its zoonotic transmission and disease severity which further complicate its control. Th1, Th2, and T-reg cells are involved in S. japonicum immunity; however, their exact roles in immunopathology of this infection are still questionable. Therefore, the monitoring of these T cell subsets' immune responses during a primary infection of S. japonicum at both transcriptional (mRNA) and protein (cytokines) levels would be essential to point out. In experimentally infected white New Zealand rabbits, mRNA expression levels of TBX2, IRF8, GATA3, STAT6, FoxP3, and MAFF were evaluated using qPCR, whereas Th1 (IFN-γ and TNF-α), Th2 (IL4 and IL13), and T-reg (IL10 and TGF-β1) cytokines were measured by ELISA test. Those parameters were estimated at two phases: the first being 4 and 8 weeks post-infection and the second phase at 12 weeks post-infection. The infected rabbits were categorized into group1 which was treated with praziquantel after the 8th week of infection and group 2 which was left untreated. In the first stage of infection, Th1 was superior to the other types at both mRNA (TBX2 and IRF8) and protein (IFN-γ and TNF-α) levels, but at the late stage, Th2 cytokines (IL4 and IL13) were surprisingly dominated without comparable change in Th2 transcriptional level in group 1. Concisely, the evaluation of T cell transcriptional factors provided clearer evidence about T cellular roles which would be a valuable supplement to control this disease in terms of protective and therapeutic vaccinations.
Collapse
Affiliation(s)
- Amel Farwa
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Longfei Xia
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Hong Zhou
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, People's Republic of China.
| |
Collapse
|
5
|
Elevated serum antibody against Schistosoma japonicum HSP60 as a promising biomarker for liver pathology in schistosomiasis. Sci Rep 2017; 7:7765. [PMID: 28798366 PMCID: PMC5552731 DOI: 10.1038/s41598-017-08283-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
The pathology associated with Schistosoma japonicum (S. japonicum) infection in humans is attributed to parasite egg-induced granulomatous inflammation and fibrosis in the host liver. Currently, a marker that is reliable, cheap, less device-dependent, and can be easily and repeatedly used on a large scale to monitor the progression of liver pathology in schistosomiasis japonica endemic areas is lacking. The levels of serum S. japonicum heat shock protein 60 (SjHSP60)-specific IgG and its subtype antibodies in animals (mice and rabbits) or patients with schistosomiasis were measured by ELISA. Liver pathologies in mice and rabbits were evaluated by gross pathology and histopathology, and hepatic fibrosis in patients was examined with ultrasound imaging. The results revealed that the titers of the total IgG and subtype IgG1 anti-SjHSP60 antibodies were positively correlated with the severity of liver pathology after S. japonicum infection. Our findings indicate that the SjHSP60 IgG and IgG1 antibody levels can be used as potential candidate biomarkers for evaluation of liver pathology in schistosomiasis; however, validation remains to be explored in further work.
Collapse
|
6
|
The dynamic changes of CD3e -CD11c + dendritic cells in spleens and bone marrow of mice infected with Schistosoma japonicum. Parasitol Res 2017; 116:1007-1011. [PMID: 28185057 DOI: 10.1007/s00436-017-5381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Schistosoma japonicum as a pathogeny requires dendritic cells to activate immune response. So, the research is to study the dynamic changes of CD3e-CD11c+ dendritic cells in mice infected with S. japonicum. Zero, 7, 28, 35, and 63 days were selected to study the variation of dendritic cells, and the proportions of CD3e-CD11c+ dendritic cells and CD86+ mature dendritic cells in spleens and bone marrow were tested by flow cytometry. As a result, the variation trends of dendritic cells in spleen and bone marrow are similar as follows: the proportions of CD3e-CD11c+ dendritic cells increased first and then decreased from day 35, but the percentages of CD86+ mature dendritic cells decreased from day 28 and increased in day 63. In vitro, cultured dendritic cells treated with SEA and SAWA were tested by flow cytometry, the variation trends of CD86 on dendritic cells are consistent with the results in days 28 and 63. Besides CD86, the expression of MHC-II also hints immune regulation. In conclusion, it is speculated that dendritic cells play a role of immune regulation through MHC-II and CD86 in S. japonicum infection. Immune regulation of dendritic cells is not only in favor of the survival of host and parasite but also can be used in the therapy for immune diseases.
Collapse
|
7
|
Chen L, Chen Q, Hou W, He L. High-throughput dynamic analysis of differentially expressed genes in splenic dendritic cells from mice infected with Schistosoma japonicum. Immunol Lett 2017; 184:15-22. [PMID: 28185924 DOI: 10.1016/j.imlet.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
Dendritic cells are the initiation and key point of immune response and play a role in immune regulation. So we explored the mechanisms involved in immune regulation of dendritic cells (DCs) against schistosomiasis using mice infected with Schistosoma japonicum. Splenic DCs from normal mice and mice with acute and chronic S. japonicum infection were sorted by flow cytometry. The numbers and functions of differentially expressed genes (DEGs) in DCs were determined by high-throughput analysis. All DEGs with transcription-level fold changes of ≥2 were selected and matched to corresponding genes in databases. Annotations and cluster analysis of DEGs were performed to compare differences between groups. Six important DEGs about immune regulation-CD86, TLR2, DC-SIGN, Capase3, PD-L2, and IL-7r were selected, and their transcription levels at different stages of schistosomisis were validated by qPCR. The Venn diagram of DEGs implied some genes are functional at all stages during S. japonicum infection, while others are only involved at certain stages. GO and KEGG pathway annotations indicated that these DEGs mainly belong to biological regulation, regulation of biological process, regulation of cellular process, antigen processing and presentation, cell adhesion molecules, cytokine-cytokine receptor interaction and Toll-like receptor signaling. Cluster analysis revealed immune regulation existed in splenic DCs. The results above indicated that the mechanisms underlying immune regulation to S. japonicum infection in mice are very complex. The present high-throughput dynamic analysis of DEGs in splenic DCs provides valuable insights into the molecular mechanisms underlying immune regulation in S. japonicum infection.
Collapse
Affiliation(s)
- Lin Chen
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qingzhou Chen
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Li He
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Chen L, He B, Hou W, He L. Cysteine protease inhibitor of Schistosoma japonicum - A parasite-derived negative immunoregulatory factor. Parasitol Res 2017; 116:901-908. [PMID: 28066871 DOI: 10.1007/s00436-016-5363-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 01/10/2023]
Abstract
Studies have shown that cysteine protease inhibitors from some parasites have immunosuppressive effects on the host. We previously have cloned a novel cysteine protease inhibitor from Schistosoma japonicum and purified its recombinant version (protein named rSj-C). Its possible inhibitory effect on the host immune response has not been described.This study shows that rSj-C inhibits lysosomal cysteine protease of murine dendritic cells (DCs). After DCs were incubated with rSj-C and then with soluble adult worm antigen (AWA) of S. japonicum, the mean fluorescence intensity of MHC class II antigens on the surface of DCs decreased significantly by flow cytometry. These results indirectly proved that rSj-C can suppress exogenous-antigen presentation by DCs. The flow cytometric assay revealed that in comparison with control groups, the proportion of CD4+CD25+Foxp3+ T cells among CD4+CD25+ T cells of Schistosom-infected mice increased significantly 8 weeks after the infected mice were injected with rSj-C (p ˂ 0.05). Additionally, the expression levels of cytokines IL-4 and TGF-β produced by T cells increased significantly as compared with these levels in the normal group (p ˂ 0.05). These results clearly show that the cysteine protease inhibitor from S. japonicum is a new parasite-derived immunosuppressive factor.
Collapse
Affiliation(s)
- Lin Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Baohua He
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Li He
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Coomes SM, Kannan Y, Pelly VS, Entwistle LJ, Guidi R, Perez-Lloret J, Nikolov N, Müller W, Wilson MS. CD4 + Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol 2017; 10:150-161. [PMID: 27166557 DOI: 10.1038/mi.2016.47] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Interleukin-10 (IL-10) is an important regulatory cytokine required to control allergy and asthma. IL-10-mediated regulation of T cell-mediated responses was previously thought to occur indirectly via antigen-presenting cells. However, IL-10 can act directly on regulatory T cells and T helper type 17 (Th17) cells. In the context of allergy, it is therefore unclear whether IL-10 can directly regulate T helper type 2 (Th2) cells and whether this is an important regulatory axis during allergic responses. We sought to determine whether IL-10 signaling in CD4+ Th2 cells was an important mechanism of immune regulation during airway allergy. We demonstrate that IL-10 directly limits Th2 cell differentiation and survival in vitro and in vivo. Ablation of IL-10 signaling in Th2 cells led to enhanced Th2 cell survival and exacerbated pulmonary inflammation in a murine model of house dust mite allergy. Mechanistically, IL-10R signaling regulated the expression of several genes in Th2 cells, including granzyme B. Indeed, IL-10 increased granzyme B expression in Th2 cells and led to increased Th2 cell death, identifying an IL-10-regulated granzyme B axis in Th2 cells controlling Th2 cell survival. This study provides clear evidence that IL-10 exerts direct effects on Th2 cells, regulating the survival of Th2 cells and severity of Th2-mediated allergic airway inflammation.
Collapse
Affiliation(s)
- S M Coomes
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - Y Kannan
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - V S Pelly
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - L J Entwistle
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - R Guidi
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - J Perez-Lloret
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - N Nikolov
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - W Müller
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - M S Wilson
- The Laboratory of Allergy and Anti-Helminth Immunity, Mill Hill Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
10
|
de la Torre-Escudero E, Pérez–Sánchez R, Manzano-Román R, Oleaga A. Schistosome infections induce significant changes in the host biliary proteome. J Proteomics 2015; 114:71-82. [DOI: 10.1016/j.jprot.2014.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
|
11
|
Riesle S, García MP, Hidalgo C, Galanti N, Saenz L, Paredes R. Bovine IgG subclasses and fertility of Echinococcus granulosus hydatid cysts. Vet Parasitol 2014; 205:125-33. [DOI: 10.1016/j.vetpar.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 02/08/2023]
|
12
|
Involvement of IL-13 and tissue transglutaminase in liver granuloma and fibrosis after schistosoma japonicum infection. Mediators Inflamm 2014; 2014:753483. [PMID: 25110399 PMCID: PMC4106180 DOI: 10.1155/2014/753483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022] Open
Abstract
Schistosomiasis, one of the most devastating parasitic diseases, is caused by Schistosoma japonicum (Sj) infection resulting in serious liver fibrosis. Interleukin- (IL-) 13, which is produced by TH2 cells, is a critical profibrotic cytokine found in various organs, including the liver. Tissue transglutaminase (tTG), a group of multifunctional enzymes, serves a central function in the pathogenesis of chronic liver diseases. However, the relationship between IL-13, tTG, and liver fibrosis during Schistosoma infection has not been established. This study investigated the involvement of IL-13 and tTG in liver fibrogenesis during Sj infection in mice. Five weeks after Sj infection, granuloma and fibrosis development in the liver coincided with an increase in IL-13 and tTG in the liver and the upregulation of serum IL-13 in infected mice. Administration of cystamine, an inhibitor of tTG, abrogated the increase in both tTG and IL-13 in infected mice and ameliorated liver fibrogenesis and granuloma development. This result establishes a novel link among IL-13, tTG, and liver granuloma and fibrosis under Sj infection. Based on their important functions in liver fibrosis induced by Sj infection, IL-13 and tTG could be promising potential drug targets against schistosomiasis.
Collapse
|
13
|
Ma X, Wang L, Zhao H, Pang N, Zhang F, Jiang T, Liu X, Mamuti W, Wen H, Ding J. Th17 cells are associated with the Th1/Th2‑cell balance during Echinococcus multilocularis infection. Mol Med Rep 2014; 10:236-40. [PMID: 24789110 DOI: 10.3892/mmr.2014.2170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the immunopathological effect of Echinococcus multilocularis (Em) using cytokine detection. Expression of the T‑helper (Th) 17‑cytokine, interleukin 17 (IL‑17), was observed using immunohistochemical staining, and levels of cytokines, including IL‑17, transforming growth factor β1 (TGF‑β1), IL‑6, interferon γ (IFN‑γ) and IL‑4, were assessed using ELISA at different stages of infection. IL‑17 expression occurred in hepatic cells at 1 month post‑infection, reached a maximum at 3 months post‑infection and then decreased gradually. Compared with the uninfected control, levels of the cytokines IL‑17, TGF‑β1, IL‑6, IFN‑γ and IL‑4 exhibited different dynamic patterns when infected with Em. In the immune response during the whole infection period, Th17 cells play an important role by secreting IL‑17, which may be involved in the Th1/Th2‑cell balance during the immune response. Th17 cells are associated with immunopathology in Em infection.
Collapse
Affiliation(s)
- Xiumin Ma
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Liang Wang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hui Zhao
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Nannan Pang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Fengbo Zhang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Tao Jiang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuelei Liu
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wulamu Mamuti
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hao Wen
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jianbing Ding
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
14
|
Luo X, Xie H, Chen D, Yu X, Wu F, Li L, Wu C, Huang J. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection. Parasitol Res 2013; 113:1001-9. [PMID: 24322293 DOI: 10.1007/s00436-013-3732-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022]
Abstract
The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P < 0.05). We found an increase in the cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P < 0.05). These results demonstrated that a S. japonicum infection could induce MLN NK and NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P < 0.05). Furthermore, intracellular cytokine staining revealed that expression of IL-4 and IL-17 were significantly enhanced in both the NK and NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P < 0.05). Taken together, these results indicated that infection-induced MLN NK and NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.
Collapse
Affiliation(s)
- Xueping Luo
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, 510182, Guangzhou, China,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The Pseudomonas aeruginosa Mannose Sensitive Hamemagglutination Strain (PA-MSHA) Induces a Th1-Polarizing Phenotype by Promoting Human Dendritic Cells Maturation. Indian J Microbiol 2013; 54:163-9. [PMID: 25320417 DOI: 10.1007/s12088-013-0436-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa mannose sensitive hamemagglutination strain (PA-MSHA) is a kind of peritrichous P. aeruginosa strain with MSHA fimbriae and has been shown to activate kinds of immunocytes. Dendritic cells (DCs) are specialized antigen-presenting cells required for the stimulating and priming CD4(+) T cells toward the T helper cell type 1 (Th1), Th2 and other different phenotypes. PA-MSHA effecting on Th1 remains an important missing link. Here we demonstrated that PA-MSHA augmented monocytes derived-dendritic cells (Mo-DCs) expression of HLA-DR, co-stimulatory and adhesion molecules, and induced Th1-promoting interleukin-12 and tumor necrosis factor α secretion, in addition, PA-MSHA treated Mo-DCs displayed lesser endocytic capacity. Furthermore, in mixed lymphocyte reactions, allostimulatory capacity of Mo-DCs was enhanced by PA-MSHA, CD4(+) T cells stimulated by PA-MSHA -activated Mo-DCs showed a Th1-polarized cytokine production, increasing secretion of IFN-γ and decreasing secretion of IL-10 and IL-4. Our findings identified PA-MSHA as an important exogenous factor that induced DCs maturation toward a Th1-promoting phenotype.
Collapse
|
16
|
Zheng Y. Strategies of Echinococcus species responses to immune attacks: implications for therapeutic tool development. Int Immunopharmacol 2013; 17:495-501. [PMID: 23973651 DOI: 10.1016/j.intimp.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China; Key Lab of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China.
| |
Collapse
|
17
|
Han H, Peng J, Hong Y, Zhang M, Han Y, Liu D, Fu Z, Shi Y, Xu J, Tao J, Lin J. MicroRNA expression profile in different tissues of BALB/c mice in the early phase of Schistosoma japonicum infection. Mol Biochem Parasitol 2013; 188:1-9. [PMID: 23415751 DOI: 10.1016/j.molbiopara.2013.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
Abstract
Schistosomiasis remains an important global public health problem that affects 200 million people in 76 countries. The molecular mechanisms of host-parasite interaction are complex, and in schistosome infection regulation of microRNA (miRNA) and the host micro-environment may be involved. In this study, an miRNA microarray was applied to investigate differences in miRNA expression in different tissues of mice before and 10 days post infection. In total, 220 miRNAs were detected in different tissues of the BALB/c mice before and after infection, including 8 miRNAs in liver, 8 in spleen and 28 in the lungs with up-regulated expression, and 3 miRNAs in liver, 5 in spleen and 28 in the lungs with down-regulated expression in mice 10 days post infection with schistosomes. The functions of these differentially expressed miRNAs are related mainly to the immune response, nutrient metabolism, cell differentiation, apoptosis, and signal pathways. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differentially expressed miRNAs revealed that many important biological pathways are triggered by schistosome infection in BALB/c mice, such as the MAPK signaling pathway, insulin signaling pathway, Toll-like receptor signaling pathway and TGF-β signaling pathway.The results reveal that miRNAs may be an important regulator of schistosome-host interaction in the early phase of Schistosoma japonicum infection. The data presented here provide valuable information to increase understanding of the regulatory function of the miRNAs in the host micro-environment, as well as the mechanism of host-parasite interactions. This may be helpful in the search for potential new drugs, and for biomarkers of early S. japonicum infection applicable in the future control of schistosomiasis.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The combined treatment of praziquantel with osteopontin immunoneutralization reduces liver damage in Schistosoma japonicum-infected mice. Parasitology 2012; 139:522-9. [PMID: 22309838 DOI: 10.1017/s0031182011002241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the therapeutic effects of osteopontin neutralization treatment on schistosome-induced liver injury in BALB/C mice. We randomly divided 100 BALB/C mice into groups A, B, C, D and group E. Mice in all groups except group A were abdominally infected with schistosomal cercariae to induce a schistosomal hepatopathological model. Mice in group C, D and group E were respectively administered with praziquantel, praziquantel plus colchicine and praziquantel plus neutralizing osteopontin antibody. We extracted mouse liver tissues at 3 and 9 weeks after the 'stool-eggs-positive' day, observed liver histopathological changes by haematoxylin-eosin and Masson trichrome staining and detected the expression of osteopontin, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β1) by immunohistochemistry, RT-PCR and Western blot. We found that praziquantel plus neutralizing osteopontin antibody treatment significantly decreased the granuloma dimension, the percentage of collagen and the expression of osteopontin, α-SMA and TGF-β1 compared to praziquantel plus colchicine treatment in both the acute and chronic stage of schistosomal liver damage (P<0·05). So we believe that the combined regimen of osteopontin immunoneutralization and anti-helminthic treatment can reduce the granulomatous response and liver fibrosis during the schistosomal hepatopathologic course.
Collapse
|
19
|
Thakar J, Pathak AK, Murphy L, Albert R, Cattadori IM. Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput Biol 2012; 8:e1002345. [PMID: 22253585 PMCID: PMC3257297 DOI: 10.1371/journal.pcbi.1002345] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/25/2011] [Indexed: 12/22/2022] Open
Abstract
Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations. Infections with different infecting agents can alter the immune response against any one parasite and the relative abundance and persistence of the infections within the host. This is because the immune system is not compartmentalized but acts as a whole to allow the host to maintain control of the infections as well as repair damaged tissues and avoid immuno-pathology. There is no comprehensive understanding of the immune responses during co-infections and of how systemic and local mechanisms interact. Here we integrated experimental data with mathematical modelling to describe the network of immune responses of single and co-infection by a respiratory bacterium and a gastrointestinal helminth. We were able to identify key cells and functions responsible for clearing or reducing both parasites and showed that some mechanisms differed between type of infection as a result of different signal outputs and cells contributing to the immune processes. This study highlights the importance of understanding the immuno-dynamics of co-infection as a host response, how immune mechanisms differ from single infections and how they may alter parasite persistence, impact and abundance.
Collapse
Affiliation(s)
- Juilee Thakar
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ashutosh K. Pathak
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lisa Murphy
- Division of Animal Production and Public Health, Veterinary School, University of Glasgow, Glasgow, United Kingdom
| | - Réka Albert
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Isabella M. Cattadori
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|