1
|
Chasapis CT, Perlepes SP, Bjørklund G, Peana M. Structural modeling of protein ensembles between E3 RING ligases and SARS-CoV-2: The role of zinc binding domains. J Trace Elem Med Biol 2023; 75:127089. [PMID: 36209710 PMCID: PMC9531365 DOI: 10.1016/j.jtemb.2022.127089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3's ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established. METHODS In this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells. CONCLUSION In silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection. DATA AVAILABILITY The data used to support the findings of this research are included within the article and are labeled with references.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy.
| |
Collapse
|
2
|
Chasapis CT, Peana M, Bekiari V. Structural Identification of Metalloproteomes in Marine Diatoms, an Efficient Algae Model in Toxic Metals Bioremediation. Molecules 2022; 27:378. [PMID: 35056698 PMCID: PMC8779346 DOI: 10.3390/molecules27020378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The biosorption of pollutants using microbial organisms has received growing interest in the last decades. Diatoms, the most dominant group of phytoplankton in oceans, are (i) pollution tolerant species, (ii) excellent biological indicators of water quality, and (iii) efficient models in assimilation and detoxification of toxic metal ions. Published research articles connecting proteomics with the capacity of diatoms for toxic metal removal are very limited. In this work, we employed a structural based systematic approach to predict and analyze the metalloproteome of six species of marine diatoms: Thalassiosira pseudonana, Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira oceanica, Fistulifera solaris, and Pseudo-nitzschia multistriata. The results indicate that the metalloproteome constitutes a significant proportion (~13%) of the total diatom proteome for all species investigated, and the proteins binding non-essential metals (Cd, Hg, Pb, Cr, As, and Ba) are significantly more than those identified for essential metals (Zn, Cu, Fe, Ca, Mg, Mn, Co, and Ni). These findings are most likely related to the well-known toxic metal tolerance of diatoms. In this study, metalloproteomes that may be involved in metabolic processes and in the mechanisms of bioaccumulation and detoxification of toxic metals of diatoms after exposure to toxic metals were identified and described.
Collapse
Affiliation(s)
- Christos T. Chasapis
- Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
| |
Collapse
|
3
|
A SARS-CoV-2 -human metalloproteome interaction map. J Inorg Biochem 2021; 219:111423. [PMID: 33813307 PMCID: PMC7955571 DOI: 10.1016/j.jinorgbio.2021.111423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
The recent pandemic caused by the novel coronavirus resulted in the greatest global health crisis since the Spanish flu pandemic of 1918. There is limited knowledge of whether SARS-CoV-2 is physically associated with human metalloproteins. Recently, high-confidence, experimentally supported protein-protein interactions between SARS-CoV-2 and human proteins were reported. In this work, 58 metalloproteins among these human targets have been identified by a structure-based approach. This study reveals that most human metalloproteins interact with the recently discovered SARS-CoV-2 orf8 protein, whose antibodies are one of the principal markers of SARS-CoV-2 infections. Furthermore, this work provides sufficient evidence to conclude that Zn2+ plays an important role in the interplay between the novel coronavirus and humans. First, the content of Zn-binding proteins in the involved human metalloproteome is significantly higher than that of the other metal ions. Second, a molecular linkage between the identified human Zn-binding proteome with underlying medical conditions, that might increase the risk of severe illness from the SARS-CoV-2 virus, has been found. Likely perturbations of host cellular metal homeostasis by SARS-CoV-2 infection are highlighted.
Collapse
|
4
|
Lubega J, Umbreen S, Loake GJ. Recent advances in the regulation of plant immunity by S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:864-872. [PMID: 33005916 DOI: 10.1093/jxb/eraa454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1). The emerging data suggest that GSNOR1 itself is a target of NO-mediated S-nitrosylation, which subsequently controls its selective autophagy, regulating cellular protein SNO levels. Recent findings also suggest that S-nitrosylation may be deployed by pathogen-challenged host cells to counteract the effect of delivered microbial effector proteins that promote pathogenesis and by the pathogens themselves to augment virulence. Significantly, it also appears that S-nitrosylation may regulate plant immune functions by controlling SUMOylation, a peptide-based PTM. In this context, global SUMOylation is regulated by S-nitrosylation of SUMO conjugating enzyme 1 (SCE1) at Cys139. This redox-based PTM has also been shown to control the function of a key zinc finger transcriptional regulator during the establishment of plant immunity. Here, we provide an update of these recent advances.
Collapse
Affiliation(s)
- Jibril Lubega
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Mintis DG, Chasapi A, Poulas K, Lagoumintzis G, Chasapis CT. Assessing the Direct Binding of Ark-Like E3 RING Ligases to Ubiquitin and Its Implication on Their Protein Interaction Network. Molecules 2020; 25:molecules25204787. [PMID: 33086510 PMCID: PMC7594095 DOI: 10.3390/molecules25204787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
The ubiquitin pathway required for most proteins’ targeted degradation involves three classes of enzymes: E1-activating enzyme, E2-conjugating enzyme, and E3-ligases. The human Ark2C is the single known E3 ligase that adopts an alternative, Ub-dependent mechanism for the activation of Ub transfer in the pathway. Its RING domain binds both E2-Ub and free Ub with high affinity, resulting in a catalytic active UbR-RING-E2-UbD complex formation. We examined potential changes in the conformational plasticity of the Ark2C RING domain and its ligands in their complexed form within the ubiquitin pathway through molecular dynamics (MD). Three molecular mechanics force fields compared to previous NMR relaxation studies of RING domain of Arkadia were used for effective and accurate assessment of MDs. Our results suggest the Ark2C Ub-RING docking site has a substantial impact on maintaining the conformational rigidity of E2-E3 assembly, necessary for the E3’s catalytic activity. In the UbR-RING-E2-UbD catalytic complex, the UbR molecule was found to have greater mobility than the other Ub, bound to E2. Furthermore, network-based bioinformatics helped us identify E3 RING ligase candidates which potentially exhibit similar structural modules as Ark2C, along with predicted substrates targeted by the Ub-binding RING Ark2C. Our findings could trigger a further exploration of related unrevealed functions of various other E3 RING ligases.
Collapse
Affiliation(s)
- Dimitris G. Mintis
- Laboratory of Statistical Thermodynamics and Macromolecules, Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, 26504 Patras, Greece;
| | - Anastasia Chasapi
- Biological Computation & Process Lab, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, 57001 Thessaloniki, Greece;
| | - Konstantinos Poulas
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26504 Patras, Greece;
- Institute of Research and Innovation-IRIS, Patras Science Park SA, Stadiou, Platani, Rio, 26504 Patras, Greece
| | - George Lagoumintzis
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26504 Patras, Greece;
- Institute of Research and Innovation-IRIS, Patras Science Park SA, Stadiou, Platani, Rio, 26504 Patras, Greece
- Correspondence: (G.L.); (C.T.C.); Tel.: +30-2610-996-312 (G.L.); +30-2610-996-261 (C.T.C.)
| | - Christos T. Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Correspondence: (G.L.); (C.T.C.); Tel.: +30-2610-996-312 (G.L.); +30-2610-996-261 (C.T.C.)
| |
Collapse
|
6
|
Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020; 94:1443-1460. [PMID: 32394086 DOI: 10.1007/s00204-020-02702-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
Zinc (Zn) is one of the most important essential nutrients of great public health significance. It is involved in numerous biological functions and it is considered as a multipurpose trace element, due to its capacity to bind to more than 300 enzymes and more than 2000 transcriptional factors. Its role in biochemical pathways and cellular functions, such as the response to oxidative stress, homeostasis, immune responses, DNA replication, DNA damage repair, cell cycle progression, apoptosis and aging is significant. Zn is required for the synthesis of protein and collagen, thus contributing to wound healing and a healthy skin. Metallothioneins are metal-binding proteins and they are potent scavengers of heavy metals, including Zn, and protect the organism against stress. Zn deficiency is observed almost in 17% of the global population and affects many organ systems, leading to dysfunction of both humoral and cell-mediated immunity, thus increasing the susceptibility to infection. This review gives a thorough insight into the most recent evidence on the association between Zn biochemistry and human pathologies, epigenetic processes, gut microbial composition, drug targets and nanomedicine.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Panagoula-Stamatina A Ntoupa
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece.
| |
Collapse
|
7
|
Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front Cell Dev Biol 2020; 8:39. [PMID: 32117970 PMCID: PMC7010608 DOI: 10.3389/fcell.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.
Collapse
Affiliation(s)
- Cristina Garcia-Barcena
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Chasapis CT, Konstantinoudis G. Protein isoelectric point distribution in the interactomes across the domains of life. Biophys Chem 2020; 256:106269. [PMID: 31733408 DOI: 10.1016/j.bpc.2019.106269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/19/2023]
Abstract
The distribution of the protein isoelectric point (pI) in the protein-protein interaction (PPI) networks across the domains of life has not been investigated yet. This work attempts to correlate the pI with the number of direct interacting partners in the experimentally supported networks involving 226.085 PPIs from 14 various organisms including human, mouse, yeast, bacteria, viruses and 53.606 virus-host interactions. The results showed that the acidic proteins (pI<3) have the highest average number of interactions in eukaryotes, while in bacteria more neutral proteins. On the contrary, the basic proteins (pI>11) have the lowest average number of interactions in human, mouse, yeast, bacteria and human-viral interactomes and the highest average in intraviral interactomes. We examined the correlation of the pI of the interacting partners by calculating the assortativity index of various PPI networks. We found that the interactions between the acidic, neutral and basic proteins have a fairly random mix, implying weak if any association between the acidic and basic proteins. Furthermore, protein features such as biological function, structurally order and disorder, subcellular localization, and homodimerization were classified according to pI in prokaryote and eukaryote proteomes.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), Patras, Greece.
| | - Garyfallos Konstantinoudis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
9
|
Chasapis CT. Building Bridges Between Structural and Network-Based Systems Biology. Mol Biotechnol 2019; 61:221-229. [DOI: 10.1007/s12033-018-0146-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Chasapis CT. Preliminary results from structural systems biology approach in Tetrahymena thermophila reveal novel perspectives for this toxicological model. Arch Microbiol 2018; 201:51-59. [PMID: 30194464 DOI: 10.1007/s00203-018-1571-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
Tetrahymena is a unicellular microbial eukaryotic organism that has been used extensively in toxicology and environmental research. This work attempts to model for the first time the wiring of proteins involved in cellular mechanisms of Cd toxicity in Tetrahymena thermophila. 1975 high-confidence PPIs between 68 Cd-binding proteins and 422 partners were inferred through a novel structural systems biology approach that utilizes comparative analysis between Tetrahymena and other eukaryotes for which experimentally supported protein interactomes exist. The PPIs of the potential network were confirmed by known domain interactions in the Protein Data Bank and its topological characteristics were compared with publicly available experimental information for T. thermophila. To experimentally validate the robustness of the proposed PPI network, the interaction between the two most interconnected hub proteins was detected through GST pull-down assay. Potential effects on Tetrahymena's cellular and metabolic processes by PPIs involving Cd-binding proteins were uncovered. Furthermore, 244 PPIs in which Cd-binding proteins or/and their partners are encoded by orthologs of human disease genes in T. thermophila, but not in yeast, were identified and analyzed. The findings suggest that Tetrahymena could be possibly a useful model for an improved understanding of molecular mechanisms of Cd toxicity in human diseases.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), 26504, Patras, Greece.
| |
Collapse
|
11
|
Chasapis CT. Hierarchical core decomposition of RING structure as a method to capture novel functional residues within RING-type E3 ligases: a structural systems biology approach. Comput Biol Med 2018; 100:86-91. [DOI: 10.1016/j.compbiomed.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/15/2022]
|
12
|
Hou F, Liu RX, Yin CH. Arkadia: Characteristics, function and role in development of human diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:3963-3969. [DOI: 10.11569/wcjd.v24.i28.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination of proteins is a post-translational modification that involves targeting and degrading misfolded or unwanted proteins by the proteasome. Arkadia, a RING-type E3 ubiquitin ligase also known as RNF111, confers the substrate specificity for ubiquitination and has a pivotal role in catalyzing the degradation of key signaling molecules. Recent research reveals that Arkadia plays a pivotal role in the transforming growth factor-β1 signaling pathway by catalyzing the degradation of key signaling molecules. In this review, we highlight the recent progress in understanding the characteristics, function and the role of Arkadia in the development of human diseases.
Collapse
|
13
|
Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol 2011; 86:521-34. [PMID: 22071549 DOI: 10.1007/s00204-011-0775-1] [Citation(s) in RCA: 555] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/26/2011] [Indexed: 02/07/2023]
Abstract
The importance of micronutrients in health and nutrition is undisputable, and among them, zinc is an essential element whose significance to health is increasingly appreciated and whose deficiency may play an important role in the appearance of diseases. Zinc is one of the most important trace elements in the organism, with three major biological roles, as catalyst, structural, and regulatory ion. Zinc-binding motifs are found in many proteins encoded by the human genome physiologically, and free zinc is mainly regulated at the single-cell level. Zinc has critical effect in homeostasis, in immune function, in oxidative stress, in apoptosis, and in aging, and significant disorders of great public health interest are associated with zinc deficiency. In many chronic diseases, including atherosclerosis, several malignancies, neurological disorders, autoimmune diseases, aging, age-related degenerative diseases, and Wilson's disease, the concurrent zinc deficiency may complicate the clinical features, affect adversely immunological status, increase oxidative stress, and lead to the generation of inflammatory cytokines. In these diseases, oxidative stress and chronic inflammation may play important causative roles. It is therefore important that status of zinc is assessed in any case and zinc deficiency is corrected, since the unique properties of zinc may have significant therapeutic benefits in these diseases. In the present paper, we review the zinc as a multipurpose trace element, its biological role in homeostasis, proliferation and apoptosis and its role in immunity and in chronic diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases.
Collapse
Affiliation(s)
- Christos T Chasapis
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|