1
|
Saul S, Karim M, Ghita L, Huang PT, Chiu W, Durán V, Lo CW, Kumar S, Bhalla N, Leyssen P, Alem F, Boghdeh NA, Tran DH, Cohen CA, Brown JA, Huie KE, Tindle C, Sibai M, Ye C, Khalil AM, Martinez-Sobrido L, Dye JM, Pinsky BA, Ghosh P, Das S, Solow-Cordero DE, Jin J, Wikswo JP, Jochmans D, Neyts J, Jonghe SD, Narayanan A, Einav S. Anticancer pan-ErbB inhibitors reduce inflammation and tissue injury and exert broad-spectrum antiviral effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.05.15.444128. [PMID: 34159337 PMCID: PMC8219101 DOI: 10.1101/2021.05.15.444128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.
Collapse
|
2
|
Ge M, Chen C, Yao W, Zhou S, Huang F, Cai J, Hei Z. Overexpression of Brg1 Alleviates Hepatic Ischemia/Reperfusion-Induced Acute Lung Injury through Antioxidative Stress Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8787392. [PMID: 28798861 PMCID: PMC5534314 DOI: 10.1155/2017/8787392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023]
Abstract
AIM To investigate whether overexpression of Brahma-related gene-1 (Brg1) can alleviate lung injury induced by hepatic ischemia/reperfusion (HIR) and its precise mechanism. METHODS Cytomegalovirus-transgenic Brg1-overexpressing (CMV-Brg1) mice and wild-type (WT) C57BL/6 mice underwent HIR. Lung histology, oxidative injury markers, and antioxidant enzyme concentrations in the lung were assessed. The protein expression levels of Brg1, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the lung were analyzed by Western blotting. RESULTS In the WT group, histopathological analysis revealed that lung damage peaked at 6 h after HIR. Meanwhile, the lung reactive oxygen species (ROS) and 8-isoprostane levels were significantly increased. The protein expression of Brg1 in lung tissue decreased to a minimum at 6 h. Overexpression of Brg1 alleviated lung injury and decreased the amounts of oxidative products, including the levels of 8-isoprostane and ROS, as well as the percentage of positive cells for 4-hydroxynonenal (4-HNE) and 8-oxo-2'-deoxyguanosine (8-OHdG). Brg1 overexpression increased the expression and nuclear translocation of Nrf2 as well as activated the antioxidases. In addition, it decreased the expression of inflammatory factors. CONCLUSION Overexpression of Brg1 alleviates oxidative lung injury induced by HIR, likely through the Nrf2 pathway.
Collapse
Affiliation(s)
- Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jun Cai
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- *Jun Cai: and
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- *Ziqing Hei:
| |
Collapse
|
3
|
Uchiyama M, Tojo K, Yazawa T, Ota S, Goto T, Kurahashi K. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion. J Surg Res 2014; 194:551-557. [PMID: 25481526 DOI: 10.1016/j.jss.2014.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. MATERIALS AND METHODS Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. RESULTS Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. CONCLUSIONS Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R.
Collapse
Affiliation(s)
- Munehito Uchiyama
- Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kentaro Tojo
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takuya Yazawa
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shuhei Ota
- Department of Palliative Care Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
4
|
Sassaki GL, Rattmann YD, Santana-Filho AP, Riter DS, Iagher F, Trindade ES, da Silva MD, Santos ARS, de Souza LM, Iacomini M, Gorin PAJ. Galactofuranosyl glycosides: immunomodulatory effects on macrophages and in vivo enhancement of lethality on sepsis. Chem Biol Interact 2013; 205:29-37. [PMID: 23756126 DOI: 10.1016/j.cbi.2013.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/09/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Galactofuranoside derivatives were synthesised by the classic Fischer glycosydation method, and their immune modulation properties were studied in vitro and in vivo. NMR spectroscopic and ESI-MS analyses confirmed the purity and authenticity of all derivatives. Their phagocyte capacities were tested in resident macrophages. Methyl β-galactofuranoside (GFB-Me) and n-octyl β-galactofuranoside (GFB-O) had an immune stimulant effect at 25μmolml(-1) with an enhancement of 35.12%±0.06 SD and 17.49%±0.11 SD, respectively, but Methyl α-galactofuranoside (GFA-Me) and n-octyl α-galactofuranoside (GFA-O) gave a low immune response. Methyl α-galactofuranoside 5,6-O-isopropylidene (GFA-IP) and Methyl β-galactofuranoside 5,6-O-isopropylidene (GFB-IP) had negative values relative to the control group of minus 4.96%±0.10 SD and -40.72%±0.07 SD, respectively. Furthermore, GFB-Me and GFB-Me-IP were evaluated in vivo on the lethality induced by cecal ligation and puncture. Cytokine levels and iNOS expression were determined and correlated to mortality data. The results showed that the free HO-5 and HO-6 and the β-configuration are essential for the induction of phagocytic activity by the galactofuranosyl units. The methyl β-galactofuranosides also enhanced lethality during sepsis, increasing the levels of pro-inflammatory cytokines and iNOS expression.
Collapse
Affiliation(s)
- Guilherme L Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Reilly C, Sato KT. Pulmonary radiofrequency ablation complicated by acute respiratory distress syndrome. Semin Intervent Radiol 2012; 28:162-6. [PMID: 22654254 DOI: 10.1055/s-0031-1280656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The authors present a case of a patient with rectal adenocarcinoma and lung metastasis undergoing elective radiofrequency (RF) ablation of a large, refractory pulmonary metastasis. The mass was located in the left upper lobe, invading the left hilum. The patient experienced shortness of breath following the procedure and shortly after extubation. This shortness of breath progressed over 4 days, when the patient developed acute respiratory distress syndrome (ARDS). The patient suffered from complications related to respiratory support and expired 9 days after RF ablation. Possible mechanisms of ARDS development following pulmonary ablation are discussed.
Collapse
Affiliation(s)
- C Reilly
- Department of Radiology - Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
6
|
Small-for-Size Liver Transplantation Increases Pulmonary Injury in Rats: Prevention by NIM811. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2012; 2012:270372. [PMID: 22675237 PMCID: PMC3364580 DOI: 10.1155/2012/270372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/09/2012] [Indexed: 01/20/2023]
Abstract
Pulmonary complications after liver transplantation (LT) often cause mortality. This study investigated whether small-for-size LT increases acute pulmonary injury and whether NIM811 which improves small-for-size liver graft survival attenuates LT-associated lung injury. Rat livers were reduced to 50% of original size, stored in UW-solution with and without NIM811 (5 μM) for 6 h, and implanted into recipients of the same or about twice the donor weight, resulting in half-size (HSG) and quarter-size grafts (QSG), respectively. Liver injury increased and regeneration was suppressed after QSG transplantation as expected. NIM811 blunted these alterations >75%. Pulmonary histological alterations were minimal at 5–18 h after LT. At 38 h, neutrophils and monocytes/macrophage infiltration, alveolar space exudation, alveolar septal thickening, oxidative/nitrosative protein adduct formation, and alveolar epithelial cell/capillary endothelial apoptosis became overt in the lungs of QSG recipients, but these alterations were mild in full-size and HSG recipients. Liver pretreatment with NIM811 markedly decreased pulmonary injury in QSG recipients. Hepatic TNFα and IL-1β mRNAs and pulmonary ICAM-1 expression were markedly higher after QSG transplantation, which were all decreased by NIM811. Together, dysfunctional small-for-size grafts produce toxic cytokines, leading to lung inflammation and injury. NIM811 decreased toxic cytokine formation, thus attenuating pulmonary injury after small-for-size LT.
Collapse
|