Chandra S, Agrawal S. Spectroscopic characterization of Lanthanoid derived from a hexadentate macrocyclic ligand: study on antifungal capacity of complexes.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014;
124:564-570. [PMID:
24508895 DOI:
10.1016/j.saa.2014.01.042]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Complexes of Ce(III), Nd(III), Sm(III) and Eu(III) were synthesized with NO-donor macrocyclic ligand, i.e. 3,5,13,15,21,22-hexaaza-2,6,12,16-tetramethyl-4,14-dithia-tricyclo[15.3.1.1(7-11)]docosane-1(21),2,5,7,9,11(22),12,15,17,19-decaene. The ligand was obtained by the condensation of 2,6-diacetylpyridine with thiourea and characterized by elemental analysis, mass, IR and (1)H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinated through four nitrogen atoms of azomethine groups and two nitrogen atoms of pyridine ring. The value of spectral parameters i.e. nephelauxetic effect (b), covalency factor (b(1/2)), Sinha parameter (δ%) and covalency angular overlap parameter (η) account for the covalent nature of the complexes. The macrocyclic ligand and its Lanthanoid were tested in vitro against two plant pathogenic fungi in order to assess their antifungal capacity.
Collapse