1
|
Abdelmageed ME, Abdelrahman RS. Canagliflozin attenuates thioacetamide-induced liver injury through modulation of HMGB1/RAGE/TLR4 signaling pathways. Life Sci 2023; 322:121654. [PMID: 37023955 DOI: 10.1016/j.lfs.2023.121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Thioacetamide (TAA), a classic liver toxic compound, is used to establish experimental models of liver injury via induction of inflammation and oxidative stress. The current study was employed to explore the effects of canagliflozin (CANA), a sodium glucose cotransporter 2 (SGLT-2) inhibitor and antidiabetic agent, on TAA-induced acute liver injury. METHODS A rat model of acute hepatic injury was established using single intraperitoneal injection of TAA (500 mg/kg) and rats received CANA (10 and 30 mg/kg, orally) once daily for 10 days prior to TAA challenge. Liver function, oxidative stress, and inflammatory parameters were measured in serum and hepatic tissues of rats. RESULTS Elevated levels of liver enzymes, hepatic malondialdehyde (MDA), and serum lactate dehydrogenase (LDH) were significantly attenuated by CANA. CANA also increased hepatic superoxide dismutase (SOD) and glutathione (GSH). Hepatic levels of high-mobility group box 1 (HMGB1), toll like receptor4 (TLR4), receptor for advanced glycation end products (RAGE), and pro-inflammatory cytokines (IL-6, and IL-1β) were normalized with CANA. Additionally, Hepatic expression of p-JNK/p-p38 MAPK was significantly attenuated by CANA compared to TAA-treated rats. CANA also decreased hepatic immunoexpression of NF-κB and TNF-α and attenuated hepatic histopathological alterations via reduction of inflammation and necrosis scores and collagen deposition. Moreover, mRNA expression levels of TNF-α and IL-6 were reduced upon CANA treatment. CONCLUSION CANA attenuates TAA-prompted acute liver damage, via suppressing HMGB1/RAGE/TLR4 signaling, regulation of oxidative stress and inflammation pathways.
Collapse
Affiliation(s)
- Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah 30001, Saudi Arabia
| |
Collapse
|
2
|
Dog hepatocytes are key effector cells in the liver innate immune response to Leishmania infantum. Parasitology 2018; 146:753-764. [PMID: 30561285 DOI: 10.1017/s0031182018002068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocytes constitute the majority of hepatic cells, and play a key role in controlling systemic innate immunity, via pattern-recognition receptors (PRRs) and by synthesizing complement and acute phase proteins. Leishmania infantum, a protozoan parasite that causes human and canine leishmaniasis, infects liver by establishing inside the Kupffer cells. The current study proposes the elucidation of the immune response generated by dog hepatocytes when exposed to L. infantum. Additionally, the impact of adding leishmanicidal compound, meglumine antimoniate (MgA), to parasite-exposed hepatocytes was also addressed. L. infantum presents a high tropism to hepatocytes, establishing strong membrane interactions. The possibility of L. infantum internalization by hepatocytes was raised, but not confirmed. Hepatocytes were able to recognize parasite presence, inducing PRRs [nucleotide oligomerization domain (NOD)1, NOD2 and Toll-like receptor (TLR)2] gene expression and generating a mix pro- and anti-inflammatory cytokine response. Reduction of cytochrome P 450s enzyme activity was also observed concomitant with the inflammatory response. Addition of MgA increased NOD2, TLR4 and interleukin 10 gene expression, indicating an immunomodulatory role for MgA. Hepatocytes seem to have a major role in coordinating liver's innate immune response against L. infantum infection, activating inflammatory mechanisms, but always balancing the inflammatory response in order to avoid cell damage.
Collapse
|
3
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
4
|
Novince CM, Whittow CR, Aartun JD, Hathaway JD, Poulides N, Chavez MB, Steinkamp HM, Kirkwood KA, Huang E, Westwater C, Kirkwood KL. Commensal Gut Microbiota Immunomodulatory Actions in Bone Marrow and Liver have Catabolic Effects on Skeletal Homeostasis in Health. Sci Rep 2017; 7:5747. [PMID: 28720797 PMCID: PMC5515851 DOI: 10.1038/s41598-017-06126-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
Despite knowledge the gut microbiota regulates bone mass, mechanisms governing the normal gut microbiota’s osteoimmunomodulatory effects on skeletal remodeling and homeostasis are unclear in the healthy adult skeleton. Young adult specific-pathogen-free and germ-free mice were used to delineate the commensal microbiota’s immunoregulatory effects on osteoblastogenesis, osteoclastogenesis, marrow T-cell hematopoiesis, and extra-skeletal endocrine organ function. We report the commensal microbiota has anti-anabolic effects suppressing osteoblastogenesis and pro-catabolic effects enhancing osteoclastogenesis, which drive bone loss in health. Suppression of Sp7(Osterix) and Igf1 in bone, and serum IGF1, in specific-pathogen-free mice suggest the commensal microbiota’s anti-osteoblastic actions are mediated via local disruption of IGF1-signaling. Differences in the RANKL/OPG Axis in vivo, and RANKL-induced maturation of osteoclast-precursors in vitro, indicate the commensal microbiota induces sustained changes in RANKL-mediated osteoclastogenesis. Candidate mechanisms mediating commensal microbiota’s pro-osteoclastic actions include altered marrow effector CD4+T-cells and a novel Gut-Liver-Bone Axis. The previously unidentified Gut-Liver-Bone Axis intriguingly implies the normal gut microbiota’s osteoimmunomodulatory actions are partly mediated via immunostimulatory effects in the liver. The molecular underpinnings defining commensal gut microbiota immunomodulatory actions on physiologic bone remodeling are highly relevant in advancing the understanding of normal osteoimmunological processes, having implications for the prevention of skeletal deterioration in health and disease.
Collapse
Affiliation(s)
- Chad M Novince
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
| | - Carolyn R Whittow
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Johannes D Aartun
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Jessica D Hathaway
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Nicole Poulides
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Michael B Chavez
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Heidi M Steinkamp
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Kaeleigh A Kirkwood
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Emily Huang
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Caroline Westwater
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Keith L Kirkwood
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| |
Collapse
|
5
|
Kiziltas S. Toll-like receptors in pathophysiology of liver diseases. World J Hepatol 2016; 8:1354-1369. [PMID: 27917262 PMCID: PMC5114472 DOI: 10.4254/wjh.v8.i32.1354] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases.
Collapse
Affiliation(s)
- Safak Kiziltas
- Safak Kiziltas, Department of Gastroenterology, Baskent University Istanbul Hospital, 34662 Istanbul, Turkey
| |
Collapse
|
6
|
Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, Crispe IN. TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota. PLoS One 2016; 11:e0151063. [PMID: 27002851 PMCID: PMC4803332 DOI: 10.1371/journal.pone.0151063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.
Collapse
Affiliation(s)
- Amélie E. Bigorgne
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- * E-mail:
| | - Beena John
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Mohammad R. Ebrahimkhani
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Masami Shimizu-Albergine
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Ian N. Crispe
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| |
Collapse
|
7
|
Grakoui A, Crispe IN. Presentation of hepatocellular antigens. Cell Mol Immunol 2016; 13:293-300. [PMID: 26924525 PMCID: PMC4856799 DOI: 10.1038/cmi.2015.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver. Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific circumstances allows both effective immunity and immunopathology.
Collapse
Affiliation(s)
- Arash Grakoui
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Al-Quraishy S, Dkhil MA, Alomar S, Abdel-Baki AAS, Delic D, Wunderlich F, Araúzo-Bravo MJ. Blood-stage malaria of Plasmodium chabaudi induces differential Tlr expression in the liver of susceptible and vaccination-protected Balb/c mice. Parasitol Res 2016; 115:1835-43. [DOI: 10.1007/s00436-016-4923-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
|
9
|
Renna MS, Figueredo CM, Rodríguez-Galán MC, Icely PA, Cejas H, Cano R, Correa SG, Sotomayor CE. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells. Immunobiology 2015; 220:1210-8. [DOI: 10.1016/j.imbio.2015.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/12/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023]
|
10
|
Appropriate development of the liver Treg compartment is modulated by the microbiota and requires TGF-β and MyD88. J Immunol Res 2014; 2014:279736. [PMID: 25177709 PMCID: PMC4142300 DOI: 10.1155/2014/279736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023] Open
Abstract
Neither the early postnatal development of the liver Treg compartment nor the factors that regulate its development has been characterized. We compared the early developmental patterns of Treg cell accumulation in murine liver, thymus, and spleen. A FoxP3EGFP reporter mouse was employed to identify Treg cells. Mononuclear cells were isolated from organs postnatally, stained for CD4, and examined by flow cytometry to enumerate FoxP3+CD4hi cells. To assess roles for TGF-β1, MyD88, and TLR2, gene-specific knockout pups were generated from heterozygous breeders. To test the role of commensal bacteria, pregnant dams were administered antibiotics during gestation and after parturition. The pattern of appearance of Treg cells differed in liver, spleen, and thymus. Notably, at 1-2 weeks, the frequency of CD4hi FoxP3+ T cells in liver exceeded that in spleen by 1.5- to 2-fold. The relative increase in liver Treg frequency was transient and was dependent upon TGF-β1 and MyD88, but not TLR2, and was abrogated by antibiotic treatment. A relative increase in liver Treg frequency occurs approximately 1-2 weeks after parturition that appears to be driven by colonization of the intestine with commensal bacteria and is mediated by a pathway that requires TGF-β1 and MyD88, but not TLR2.
Collapse
|
11
|
Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 2013; 14:646-53. [PMID: 23778791 DOI: 10.1038/ni.2604] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
The body is composed of various tissue microenvironments with finely tuned local immunosurveillance systems, many of which are in close apposition with distinct commensal niches. Mammals have formed an evolutionary partnership with the microbiota that is critical for metabolism, tissue development and host defense. Despite our growing understanding of the impact of this host-microbe alliance on immunity in the gastrointestinal tract, the extent to which individual microenvironments are controlled by resident microbiota remains unclear. In this Perspective, we discuss how resident commensals outside the gastrointestinal tract can control unique physiological niches and the potential implications of the dialog between these commensals and the host for the establishment of immune homeostasis, protective responses and tissue pathology.
Collapse
Affiliation(s)
- Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
12
|
Bieghs V, Trautwein C. The innate immune response during liver inflammation and metabolic disease. Trends Immunol 2013; 34:446-52. [PMID: 23668977 DOI: 10.1016/j.it.2013.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/06/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
The role of the inflammatory response is to combat tissue injury and infection. Innate immune cells recognize cell damage or pathogen invasion with intracellular or surface-expressed pattern recognition receptors (PRRs). Activated PRRs subsequently initiate signaling cascades that trigger the release of factors promoting the inflammatory response. Because the liver is a site where foreign antigens from the gastrointestinal tract encounter the immune system, it is particularly enriched with innate immune cells. These cells can modify and disrupt critical processes implicated in metabolic disease. As such, metabolic stress initiates a feedforward cycle of inflammatory responses, resulting in a state of unresolved chronic inflammation in the liver. Accordingly, the crosstalk between these innate immune cells and the resident parenchymal cells plays an important role in the development of acute and chronic liver disease.
Collapse
Affiliation(s)
- Veerle Bieghs
- Department of Internal Medicine III, University Hospital, RWTH-Aachen, Germany.
| | | |
Collapse
|
13
|
Miranda-Díaz AG, Alonso-Martínez H, Hernández-Ojeda J, Arias-Carvajal O, Rodríguez-Carrizalez AD, Román-Pintos LM. Toll-like receptors in secondary obstructive cholangiopathy. Gastroenterol Res Pract 2011; 2011:265093. [PMID: 22114589 PMCID: PMC3205723 DOI: 10.1155/2011/265093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 12/19/2022] Open
Abstract
Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper.
Collapse
Affiliation(s)
- A. G. Miranda-Díaz
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - H. Alonso-Martínez
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - J. Hernández-Ojeda
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - O. Arias-Carvajal
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - A. D. Rodríguez-Carrizalez
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| | - L. M. Román-Pintos
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 JAL, Mexico
| |
Collapse
|