1
|
Liu WT, Wang HT, Yeh YH, Wong TW. An Update on Recent Advances of Photodynamic Therapy for Primary Cutaneous Lymphomas. Pharmaceutics 2023; 15:pharmaceutics15051328. [PMID: 37242570 DOI: 10.3390/pharmaceutics15051328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Primary cutaneous lymphomas are rare non-Hodgkin lymphomas consisting of heterogeneous disease entities. Photodynamic therapy (PDT) utilizing photosensitizers irradiated with a specific wavelength of light in the presence of oxygen exerts promising anti-tumor effects on non-melanoma skin cancer, yet its application in primary cutaneous lymphomas remains less recognized. Despite many in vitro data showing PDT could effectively kill lymphoma cells, clinical evidence of PDT against primary cutaneous lymphomas is limited. Recently, a phase 3 "FLASH" randomized clinical trial demonstrated the efficacy of topical hypericin PDT for early-stage cutaneous T-cell lymphoma. An update on recent advances of photodynamic therapy in primary cutaneous lymphomas is provided.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Han-Tang Wang
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Hsuan Yeh
- School of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Photodynamic therapy in the treatment of patients with mycosis fungoides. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2022-11-1-27-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The review highlights the current understanding of the epidemiology, etiology, pathogenesis, existing classifications of mycosis fungoides. Methods for diagnosis and treatment of the pathology are described, among which photodynamic therapy (PDT) plays an important role. The main advantages of PDT for mycosis fungoides include the absence of systemic toxicity, non-invasiveness, selectivity, absence of carcinogenic potential, the possibility of repeated courses of treatment, and good cosmetic results. This review collects and analyzes the results of clinical trials of PDT in patients with mycosis fungoides. The analysis showed high efficiency of PDT in patients with mycosis fungoides with isolated or limited spots and plaques. PDT can be considered as the therapy of choice in patients with facial lesions when a good cosmetic result is one of the main requirements, and radiation therapy, nitrogen mustard or carmustine can leave permanent and visible scars. Plaques located in the axillary or inguinal skin folds that are inaccessible to phototherapy can also be treated with PDT.
Collapse
|
3
|
Photodynamic therapy in the treatment of patients with mycosis fungoides. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2022-11-1-27-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The review highlights the current understanding of the epidemiology, etiology, pathogenesis, existing classifications of mycosis fungoides. Methods for diagnosis and treatment of the pathology are described, among which photodynamic therapy (PDT) plays an important role. The main advantages of PDT for mycosis fungoides include the absence of systemic toxicity, non-invasiveness, selectivity, absence of carcinogenic potential, the possibility of repeated courses of treatment, and good cosmetic results. This review collects and analyzes the results of clinical trials of PDT in patients with mycosis fungoides. The analysis showed high efficiency of PDT in patients with mycosis fungoides with isolated or limited spots and plaques. PDT can be considered as the therapy of choice in patients with facial lesions when a good cosmetic result is one of the main requirements, and radiation therapy, nitrogen mustard or carmustine can leave permanent and visible scars. Plaques located in the axillary or inguinal skin folds that are inaccessible to phototherapy can also be treated with PDT.
Collapse
|
4
|
Sibarani J, Sirait SH, Widihati IAG, Manurung M. Positively charged nanomicelles in water of amphiphilic copolymer
chitosan‐g‐polylactide
as drug carrier of photoporphyrin
IX
for photodynamic therapy. J Appl Polym Sci 2021. [DOI: 10.1002/app.50729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James Sibarani
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Simon Hamonangan Sirait
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Ida Ayu Gede Widihati
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Manuntun Manurung
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| |
Collapse
|
5
|
Özdemir M, Artuç GÖ, Akkurt B, Yalçın B, Salan Ü, Durmuş M, Bulut M. Synthesis, characterization, photophysics, and photochemistry of peripherally substituted tetrakis(quinolinylethylenephenoxy)-substituted zinc( ii) phthalocyanines. NEW J CHEM 2021. [DOI: 10.1039/d1nj00854d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinoline substituted zinc phthalocyanine derivatives were synthesized and characterized, and their photophysical and photochemical properties were investigated.
Collapse
Affiliation(s)
- Mücahit Özdemir
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| | - Gamze Özgül Artuç
- Istanbul Yeni Yuzyil University
- Department of Pharmacy
- 34010 Istanbul
- Turkey
| | - Barbaros Akkurt
- Istanbul Technical University
- Department of Chemistry
- 34467 Istanbul
- Turkey
| | - Bahattin Yalçın
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| | - Ümit Salan
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| | - Mahmut Durmuş
- Gebze Technical University
- Department of Chemistry
- 41400 Kocaeli
- Turkey
| | - Mustafa Bulut
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| |
Collapse
|
6
|
Salva KA, Kim YH, Rahbar Z, Wood GS. Epigenetically Enhanced PDT Induces Significantly Higher Levels of Multiple Extrinsic Pathway Apoptotic Factors than Standard PDT, Resulting in Greater Extrinsic and Overall Apoptosis of Cutaneous T-cell Lymphoma. Photochem Photobiol 2018; 94:1058-1065. [PMID: 29675945 DOI: 10.1111/php.12925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 11/27/2022]
Abstract
Aminolevulinate-based photodynamic therapy (ALA-PDT) selectively eliminates diseased tissues primarily through the induction of intrinsic apoptotic pathway. ALA-PDT is a first-line therapy for actinic keratosis, however, it is less effective for cutaneous T-cell lymphoma (CTCL). We have previously demonstrated that the resistance of CTCL to apoptosis correlates with decreased expression of death receptors such as FAS, and that methotrexate functions as an epigenetic regulator that reestablishes the susceptibility of CTCL to extrinsic pathway apoptosis. We showed previously that MTX augments the effectiveness of PDT by sensitizing cells to apoptosis by induction of apoptotic factors, a process we call "epigenetically enhanced" PDT (ePDT). Here, in CTCL cell lines, leukemic CTCL cells, and normal blood T cells, we analyzed multiple components of the FAS, TRAIL, and TNF families using multispectral imaging of immunostained cytopreparations, a quantitative technique with five-fold greater sensitivity than standard immunocytology. ePDT induced significantly greater FAS, FASL, TRAIL-R1 & -R2, and TNFα levels than standard PDT. This correlated with significantly greater induction of extrinsic pathway apoptosis and/or overall apoptosis in all CTCL samples. There was no appreciable effect on normal T cells. These data set the stage for clinical trials of ePDT as a novel localized treatment of CTCL.
Collapse
Affiliation(s)
- Katrin A Salva
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Youn H Kim
- Department of Dermatology, Stanford University, Stanford, CA
| | - Ziba Rahbar
- Department of Dermatology, Stanford University, Stanford, CA
| | - Gary S Wood
- Department of Dermatology, University of Wisconsin, Madison, WI.,VA Medical Center, Madison, WI
| |
Collapse
|
7
|
Abramczyk H, Brozek-Pluska B, Surmacki J, Tondusson M, Freysz E. Photostability of biological systems—Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Soler DC, Ohtola J, Sugiyama H, Rodriguez ME, Han L, Oleinick NL, Lam M, Baron ED, Cooper KD, McCormick TS. Activated T cells exhibit increased uptake of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death. Photochem Photobiol Sci 2016; 15:822-31. [PMID: 27161819 DOI: 10.1039/c6pp00058d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an emerging treatment for malignant and inflammatory dermal disorders. Photoirradiation of the silicon phthalocyanine (Pc) 4 photosensitizer with red light generates singlet oxygen and other reactive oxygen species to induce cell death. We previously reported that Pc 4-PDT elicited cell death in lymphoid-derived (Jurkat) and epithelial-derived (A431) cell lines in vitro, and furthermore that Jurkat cells were more sensitive than A431 cells to treatment. In this study, we examined the effectiveness of Pc 4-PDT on primary human CD3(+) T cells in vitro. Fluorometric analyses of lysed T cells confirmed the dose-dependent uptake of Pc 4 in non-stimulated and stimulated T cells. Flow cytometric analyses measuring annexin V and propidium iodide (PI) demonstrated a dose-dependent increase of T cell apoptosis (6.6-59.9%) at Pc 4 doses ranging from 0-300 nM. Following T cell stimulation through the T cell receptor using a combination of anti-CD3 and anti-CD28 antibodies, activated T cells exhibited increased susceptibility to Pc 4-PDT-induced apoptosis (10.6-81.2%) as determined by Pc 4 fluorescence in each cell, in both non-stimulated and stimulated T cells, Pc 4 uptake increased with Pc 4 dose up to 300 nM as assessed by flow cytometry. The mean fluorescence intensity (MFI) of Pc 4 uptake measured in stimulated T cells was significantly increased over the uptake of resting T cells at each dose of Pc 4 tested (50, 100, 150 and 300 nM, p < 0.001 between 50 and 150 nM, n = 8). Treg uptake was diminished relative to other T cells. Cutaneous T cell lymphoma (CTCL) T cells appeared to take up somewhat more Pc 4 than normal resting T cells at 100 and 150 nm Pc 4. Confocal imaging revealed that Pc 4 localized in cytoplasmic organelles, with approximately half of the Pc 4 co-localized with mitochondria in T cells. Thus, Pc 4-PDT exerts an enhanced apoptotic effect on activated CD3(+) T cells that may be exploited in targeting T cell-mediated skin diseases, such as cutaneous T cell lymphoma (CTCL) or psoriasis.
Collapse
Affiliation(s)
- David C Soler
- Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Salva KA, Wood GS. Epigenetically Enhanced Photodynamic Therapy (ePDT) is Superior to Conventional Photodynamic Therapy for Inducing Apoptosis in Cutaneous T-Cell Lymphoma. Photochem Photobiol 2015; 91:1444-51. [PMID: 26302991 DOI: 10.1111/php.12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/01/2015] [Indexed: 11/26/2022]
Abstract
Conventional photodynamic therapy with aminolevulinate (ALA-PDT) selectively induces apoptosis in diseased cells and is highly effective for treating actinic keratoses. However, similar results are achieved only in a subset of patients with cutaneous T-cell lymphoma (CTCL). Our previous work shows that the apoptotic resistance of CTCL correlates with low expression of death receptors like Fas cell surface death receptor (FAS), and that methotrexate upregulates FAS by inhibiting the methylation of its promoter, acting as an epigenetic derepressor that restores the susceptibility of FAS-low CTCL to caspase-8-mediated apoptosis. Here, we demonstrate that methotrexate increases the response of CTCL to ALA-PDT, a concept we refer to as epigenetically enhanced PDT (ePDT). Multiple CTCL cell lines were subjected to conventional PDT versus ePDT. Apoptotic biomarkers were analyzed in situ with multispectral imaging analysis of immunostained cells, a method that is quantitative and 5× more sensitive than standard immunohistology for antigen detection. Compared to conventional PDT or methotrexate alone, ePDT led to significantly greater cell death in all CTCL cell lines tested by inducing greater activation of caspase-8-mediated extrinsic apoptosis. Upregulation of FAS and/or tumor necrosis factor-related apoptosis-inducing ligand pathway components was observed in different CTCL cell lines. These findings provide a rationale for clinical trials of ePDT for CTCL.
Collapse
Affiliation(s)
- Katrin Agnes Salva
- Department of Dermatology, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI
| | - Gary S Wood
- Department of Dermatology, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI.,VA Medical Center, Madison, WI
| |
Collapse
|
10
|
Mfouo-Tynga I, Abrahamse H. Cell death pathways and phthalocyanine as an efficient agent for photodynamic cancer therapy. Int J Mol Sci 2015; 16:10228-41. [PMID: 25955645 PMCID: PMC4463643 DOI: 10.3390/ijms160510228] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.
Collapse
Affiliation(s)
- Ivan Mfouo-Tynga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
11
|
|
12
|
|
13
|
Li JY, Horwitz S, Moskowitz A, Myskowski PL, Pulitzer M, Querfeld C. Management of cutaneous T cell lymphoma: new and emerging targets and treatment options. Cancer Manag Res 2012; 4:75-89. [PMID: 22457602 PMCID: PMC3308634 DOI: 10.2147/cmar.s9660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCL) clinically and biologically represent a heterogeneous group of non-Hodgkin lymphomas, with mycosis fungoides and Sézary syndrome being the most common subtypes. Over the last decade, new immunological and molecular pathways have been identified that not only influence CTCL phenotype and growth, but also provide targets for therapies and prognostication. This review will focus on recent advances in the development of therapeutic agents, including bortezomib, the histone deacetylase inhibitors (vorinostat and romidepsin), and pralatrexate in CTCL.
Collapse
Affiliation(s)
- Janet Y Li
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lee Y, Baron ED. Photodynamic Therapy: Current Evidence and Applications in Dermatology. ACTA ACUST UNITED AC 2011; 30:199-209. [DOI: 10.1016/j.sder.2011.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 10/14/2022]
|
15
|
Kinsella TJ, Baron ED, Colussi VC, Cooper KD, Hoppel CL, Ingalls ST, Kenney ME, Li X, Oleinick NL, Stevens SR, Remick SC. Preliminary clinical and pharmacologic investigation of photodynamic therapy with the silicon phthalocyanine photosensitizer pc 4 for primary or metastatic cutaneous cancers. Front Oncol 2011; 1:14. [PMID: 22649754 PMCID: PMC3355859 DOI: 10.3389/fonc.2011.00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/19/2011] [Indexed: 01/08/2023] Open
Abstract
Photodynamic therapy (PDT) for cutaneous malignancies has been found to be an effective treatment with a range of photosensitizers. The phthalocyanine Pc 4 was developed initially for PDT of primary or metastatic cancers in the skin. A Phase I trial was initiated to evaluate the safety and pharmacokinetic profiles of systemically administered Pc 4 followed by red light (Pc 4-PDT) in cutaneous malignancies. A dose-escalation study of Pc 4 (starting dose 0.135 mg/m(2)) at a fixed light fluence (135 J/cm(2) of 675-nm light) was initiated in patients with primary or metastatic cutaneous malignancies with the aim of establishing the maximum tolerated dose (MTD). Blood samples were taken at intervals over the first 60 h post-PDT for pharmacokinetic analysis, and patients were evaluated for toxicity and tumor response. A total of three patients (two females with breast cancer and one male with cutaneous T-cell lymphoma) were enrolled and treated over the dose range of 0.135 mg/m(2) (first dose level) to 0.54 mg/m(2) (third dose level). Grade 3 erythema within the photoirradiated area was induced in patient 2, and transient tumor regression in patient 3, in spite of the low photosensitizer doses. Pharmacokinetic observations fit a three-compartment exponential elimination model with an initial rapid distribution phase (∼0.2 h) and relatively long terminal elimination phase (∼28 h), Because of restrictive exclusion criteria and resultant poor accrual, the trial was closed before MTD could be reached. While the limited accrual to this initial Phase I study did not establish the MTD nor establish a complete pharmacokinetic and safety profile of intravenous Pc 4-PDT, these preliminary data support further Phase I testing of this new photosensitizer.
Collapse
Affiliation(s)
- Timothy James Kinsella
- Department of Radiation Oncology, University Hospitals Case Medical CenterCleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
| | - Elma D. Baron
- Case Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- Department of Dermatology, Case Western Reserve UniversityCleveland, OH, USA
- Department of Dermatology, University Hospitals Case Medical CenterCleveland, OH, USA
- Dermatology Service, Louis Stokes Cleveland Department of Veterans Affairs Medical CenterCleveland, OH, USA
| | - Valdir C. Colussi
- Department of Radiation Oncology, University Hospitals Case Medical CenterCleveland, OH, USA
| | - Kevin D. Cooper
- Case Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- Department of Dermatology, Case Western Reserve UniversityCleveland, OH, USA
- Department of Dermatology, University Hospitals Case Medical CenterCleveland, OH, USA
- Dermatology Service, Louis Stokes Cleveland Department of Veterans Affairs Medical CenterCleveland, OH, USA
| | - Charles L. Hoppel
- Case Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- Department of Pharmacology, Case Western Reserve UniversityCleveland, OH, USA
| | - Stephen T. Ingalls
- Department of Pharmacology, Case Western Reserve UniversityCleveland, OH, USA
| | - Malcolm E. Kenney
- Department of Chemistry, Case Western Reserve UniversityCleveland, OH, USA
| | - Xiaolin Li
- Department of Pharmacology, Case Western Reserve UniversityCleveland, OH, USA
| | - Nancy L. Oleinick
- Case Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- Department of Radiation Oncology, Case Western Reserve UniversityCleveland, OH, USA
| | - Seth R. Stevens
- Case Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- Department of Dermatology, Case Western Reserve UniversityCleveland, OH, USA
- Department of Dermatology, University Hospitals Case Medical CenterCleveland, OH, USA
- Dermatology Service, Louis Stokes Cleveland Department of Veterans Affairs Medical CenterCleveland, OH, USA
| | - Scot C. Remick
- Department of Medicine, University Hospitals Case Medical CenterCleveland, OH, USA
- Department of Medicine, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|