1
|
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Namdar A, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 2023; 21:57. [PMID: 36915102 PMCID: PMC10009952 DOI: 10.1186/s12964-023-01074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Prominent Role of Histone Modifications in the Regulation of Tumor Metastasis. Int J Mol Sci 2021; 22:ijms22052778. [PMID: 33803458 PMCID: PMC7967218 DOI: 10.3390/ijms22052778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor aggressiveness and progression is highly dependent on the process of metastasis, regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra- and extravasation, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding RNAs participate in the widespread changes of gene expression that characterize the metastatic phenotype. At the chromatin level, active and repressive histone post-translational modifications (PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with the different steps of metastatic process, focusing in particular on the prominent role of histone modifications and the modifying enzymes that mediate transcriptional regulation of genes associated with tumor progression. We further discuss the development of novel treatment strategies targeting the reversibility of histone modifications and highlight their importance in the future of cancer therapy.
Collapse
|
3
|
Škovierová H, Okajčeková T, Strnádel J, Vidomanová E, Halašová E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int J Mol Med 2017; 41:1187-1200. [PMID: 29286071 PMCID: PMC5819928 DOI: 10.3892/ijmm.2017.3320] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Numerous studies over the past two decades have focused on the epithelial-to-mesenchymal transition (EMT) and its role in the development of metastasis. Certain studies highlighted the importance of EMT in the dissemination of tumor cells and metastasis of epithelium-derived carcinomas. Tumor metastasis is a multistep process during which tumor cells change their morphology, and start to migrate and invade distant sites. The present review discusses the current understanding of the molecular mechanisms contributing to EMT in embryogenesis, fibrosis and tumorigenesis. Additionally, the signaling pathways that initiate EMT through transcriptional factors responsible for the activation and suppression of various genes associated with cancer cell migration were investigated. Furthermore, the important role of the epigenetic modifications that regulate EMT and the reverse process, mesenchymal-to-epithelial transition (MET) are discussed. MicroRNAs are key regulators of various intracellular processes and current knowledge of EMT has significantly improved due to microRNA characterization. Their effect on signaling pathways and the ensuing events that occur during EMT at the molecular level is becoming increasingly recognized. The current review also highlights the role of circulating tumor cells (CTCs) and CTC clusters, and their ability to form metastases. In addition, the biological properties of different types of circulating cells based on their tumor-forming potential are compared.
Collapse
Affiliation(s)
- Henrieta Škovierová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Terézia Okajčeková
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Ján Strnádel
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Eva Vidomanová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| |
Collapse
|
4
|
Klieser E, Urbas R, Stättner S, Primavesi F, Jäger T, Dinnewitzer A, Mayr C, Kiesslich T, Holzmann K, Di Fazio P, Neureiter D, Swierczynski S. Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome. Hum Pathol 2017; 65:41-52. [PMID: 28235630 DOI: 10.1016/j.humpath.2017.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Epigenetic factors contribute to carcinogenesis, tumor promotion, and chemoresistance. Histone deacetylases (HDACs) are epigenetic regulators that primarily cause chromatin compaction, leading to inaccessibility of promoter regions and eventually gene silencing. Many cancer entities feature overexpression of HDACs. Currently, the role of HDACs in pancreatic neuroendocrine tumors (pNETs) is unclear. We analyzed the expression patterns of all HDAC classes (classes I, IIA, IIB, III, and IV) in 5 human tissue microarrays representing 57 pNETs resected between 1997 and 2013 and corresponding control tissue. All pNET cases were characterized clinically and pathologically according to recent staging guidelines. The investigated cases included 32 (56.1%) female and 25 (43.9%) male pNET patients (total n=57, 47.4% immunohistochemically endocrine positive). Immunohistochemical profiling revealed a significant up-regulation of all HDAC classes in pNET versus control, with different levels of intensity and extensity ranging from 1.5- to >7-fold up-regulation. In addition, expression of several HDACs (HDAC1, HDAC2, HDAC5, HDAC11, and Sirt1) was significantly increased in G3 tumors. Correlation analysis showed a significant association between the protein expression of HDAC classes I, III, and IV and rate of the pHH3/Ki-67-associated mitotic and proliferation index. Furthermore, especially HDAC5 proved as a negative predictor of disease-free and overall survival in pNET patients. Overall, we demonstrate that specific members of all 4 HDAC classes are heterogeneously expressed in pNET. Moreover, expression of HDACs was associated with tumor grading, proliferation markers, and patient survival, therefore representing interesting new targets in pNET treatment.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Romana Urbas
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Stefan Stättner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Tarkan Jäger
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Adam Dinnewitzer
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Klaus Holzmann
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Stefan Swierczynski
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| |
Collapse
|
5
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
A Novel High-Content Immunofluorescence Assay as a Tool to Identify at the Single Cell Level γ-Globin Inducing Compounds. PLoS One 2015; 10:e0141083. [PMID: 26509275 PMCID: PMC4624791 DOI: 10.1371/journal.pone.0141083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
The identification of drugs capable of reactivating γ-globin to ameliorate β-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS) aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/β globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing β-globin (β-K562) to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and β-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat) and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX) greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs) to improve pharmacological γ-globin reactivation for the treatment of β-hemoglobinopathies.
Collapse
|
7
|
Belo H, Silva G, Cardoso BA, Porto B, Minguillon J, Barbot J, Coutinho J, Casado JA, Benedito M, Saturnino H, Costa E, Bueren JA, Surralles J, Almeida A. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential. PLoS One 2015; 10:e0139740. [PMID: 26466379 PMCID: PMC4605638 DOI: 10.1371/journal.pone.0139740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.
Collapse
Affiliation(s)
- Hélio Belo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gabriela Silva
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Bruno A. Cardoso
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética do Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | - Jordi Minguillon
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - José Barbot
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Jorge Coutinho
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Jose A. Casado
- Hematopoiesis and Gene Therapy Division, CIEMAT, Madrid, Spain
| | - Manuela Benedito
- Serviço de hematologia do Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Hema Saturnino
- Serviço de hematologia do Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Emília Costa
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Juan A. Bueren
- Unidade de Hematologia Pediátrica do Centro Hospitalar do Porto, Porto, Portugal
| | - Jordi Surralles
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Antonio Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
8
|
Epithelial–mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 2015; 150:33-46. [PMID: 25595324 DOI: 10.1016/j.pharmthera.2015.01.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
|
9
|
Jabbour E, Garcia-Manero G. Deacetylase inhibitors for the treatment of myelodysplastic syndromes. Leuk Lymphoma 2015; 56:1205-12. [PMID: 25058371 DOI: 10.3109/10428194.2014.946025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myelodysplastic syndromes (MDS) are a diverse group of myeloid disorders, with patients being at risk for cytopenias or progression to acute myeloid leukemia. Several classification and prognostic scoring systems have been developed. High-intensity treatments are not appropriate for all patients. Two demethylating agents, azacitidine and decitabine, are approved for the treatment of MDS, although many patients do not derive long-term benefit and eventually progress. Deacetylase inhibitors have emerged as novel treatment candidates based on mechanistic rationale and preliminary data. This article reviews existing data on MDS treatment and discusses the rationale and potential for combination with deacetylase inhibitors.
Collapse
Affiliation(s)
- Elias Jabbour
- Leukemia Department, M. D. Anderson Cancer Center , Houston, TX , USA
| | | |
Collapse
|
10
|
Swierczynski S, Klieser E, Illig R, Alinger-Scharinger B, Kiesslich T, Neureiter D. Histone deacetylation meets miRNA: epigenetics and post-transcriptional regulation in cancer and chronic diseases. Expert Opin Biol Ther 2015; 15:651-64. [PMID: 25766312 DOI: 10.1517/14712598.2015.1025047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Epigenetic regulation via DNA methylation, histone acetylation, as well as by microRNAs (miRNAs) is currently in the scientific focus due to its role in carcinogenesis and its involvement in initiation, progression and metastasis. While many target genes of DNA methylation, histone acetylation and miRNAs are known, even less information exists as to how these mechanisms cooperate and how they may regulate each other in a specific pathological context. For further development of therapeutic approaches, this review presents the current status of the crosstalk of histone acetylation and miRNAs in human carcinogenesis and chronic diseases. AREAS COVERED This article reviews information from comprehensive PubMed searches to evaluate relevant literature with a focus on possible association between histone acetylation, miRNAs and their targets. Our analysis identified specific miRNAs which collaborate with histone deacetylases (HDACs) and cooperatively regulate several relevant target genes. EXPERT OPINION Fourteen miRNAs could be linked to the expression of eight HDACs influencing the α-(1,6)-fucosyltransferase, polycystin-2 and the fibroblast-growth-factor 2 pathways. Focusing on the complex linkage of miRNA and HDAC expression could give deeper insights in new 'druggable' targets and might provide possible novel therapeutic approaches in future.
Collapse
Affiliation(s)
- Stefan Swierczynski
- Paracelsus Medical University, Salzburger Landeskliniken, Department of Surgery , Salzburg , Austria
| | | | | | | | | | | |
Collapse
|
11
|
Wang P, Ma D, Wang J, Fang Q, Gao R, Wu W, Lu T, Cao L. Silencing HO-1 sensitizes SKM-1 cells to apoptosis induced by low concentration 5-azacytidine through enhancing p16 demethylation. Int J Oncol 2015; 46:1317-27. [PMID: 25585641 DOI: 10.3892/ijo.2015.2835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Heme oxygenase-1 was reported previously as a resistance target on acute myelocytic leukemia (AML). We found that HO-1 was resistant to 5-azacytidine (AZA) treatment of myelodysplastic syndrome (MDS), and explored further the relative mechanisms. Patient bone marrow mononuclear cells (n=48) diagnosed as different levels of MDS were collected. Cell growth was evaluated by MTT assay; cell cycle and apoptosis were detected by flow cytometry; mRNA expression was assessed by real-time PCR, protein expression was analyzed through western blotting. Methylation was assessed by MSP. The survival time, and weight of mice were recorded. HO-1 overexpression was observed in SKM-1 cells after AZA treatment comparing to other cell lines. The HO-1 expression in MDS patients with high-risk was higher than in low-risk patients. After HO-1 was silenced by lentivirus-mediated siRNA, the proliferation of SKM-1 cells was effectively inhibited by low concentration AZA, and the cell cycle was arrested in the G0/G1 phase. Upregulation of p16 and changing of p16-relative cell cycle protein was observed after silencing HO-1 in AZA treated SKM-1 cells. In addition, DNMT1 was downregulated following the decrease of HO-1 expression. In vivo, silencing HO-1 inhibited SKM-1 cell growth induced by AZA in a NOD/SCID mouse model. Silencing HO-1 sensitized SKM-1 cells toward AZA, which may be attributed to the influence of HO-1 on AZA-induced p16 demethylation. HO-1 may be one of the targets that enhance the therapeutic effects of AZA on MDS malignant transformation inspiring new treatment methods for high-risk and very high-risk MDS patients in clinical practice.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, Affiliated Baiyun Hospital of Guiyang Medical University, Guiyang 550014, P.R. China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Weibing Wu
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Tangsheng Lu
- School of Pharmacy, Guiyang Medical University, Guiyang 550004, P.R. China
| | - Lu Cao
- School of Pharmacy, Guiyang Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
12
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
13
|
Neureiter D, Jäger T, Ocker M, Kiesslich T. Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J Gastroenterol 2014; 20:7830-7848. [PMID: 24976721 PMCID: PMC4069312 DOI: 10.3748/wjg.v20.i24.7830] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
An improvement in pancreatic cancer treatment represents an urgent medical goal. Late diagnosis and high intrinsic resistance to conventional chemotherapy has led to a dismal overall prognosis that has remained unchanged during the past decades. Increasing knowledge about the molecular pathogenesis of the disease has shown that genetic alterations, such as mutations of K-ras, and especially epigenetic dysregulation of tumor-associated genes, such as silencing of the tumor suppressor p16ink4a, are hallmarks of pancreatic cancer. Here, we describe genes that are commonly affected by epigenetic dysregulation in pancreatic cancer via DNA methylation, histone acetylation or miRNA (microRNA) expression, and review the implications on pancreatic cancer biology such as epithelial-mesenchymal transition, morphological pattern formation, or cancer stem cell regulation during carcinogenesis from PanIN (pancreatic intraepithelial lesions) to invasive cancer and resistance development. Epigenetic drugs, such as DNA methyltransferases or histone deactylase inhibitors, have shown promising preclinical results in pancreatic cancer and are currently in early phases of clinical development. Combinations of epigenetic drugs with established cytotoxic drugs or targeted therapies are promising approaches to improve the poor response and survival rate of pancreatic cancer patients.
Collapse
|
14
|
Vasilatou D, Papageorgiou SG, Dimitriadis G, Pappa V. Epigenetic alterations and microRNAs: new players in the pathogenesis of myelodysplastic syndromes. Epigenetics 2013; 8:561-70. [PMID: 23760524 DOI: 10.4161/epi.24897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The term epigenetics refers to the heritable changes in gene expression that do not represent changes in DNA sequence. DNA methylation and histone modification are the best studied epigenetic mechanisms. However, microRNAs, which affect gene expression at the posttranscriptional level, should be considered as members of the epigenetic machinery too. Myelodysplastic syndromes (MDS) are clone disorders of the hematopoietic stem cell with increased risk of leukemic transformation. Over the years, increased number of studies indicates the role of epigenetic mechanisms, including microRNAs, in MDS pathogenesis and prognosis. Indeed, epigenetic therapy with demethylating agents has already been applied to MDS. In this review we summarize current knowledge on the role of epigenetic alterations in MDS pathogenesis and treatment.
Collapse
Affiliation(s)
- Diamantina Vasilatou
- Second Department of Internal Medicine and Research Institute; Hematology Unit; Athens University Medical School; "Attikon" University General Hospital; Athens, Greece
| | | | | | | |
Collapse
|
15
|
Silva G, Cardoso BA, Belo H, Almeida AM. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms. PLoS One 2013; 8:e53766. [PMID: 23320102 PMCID: PMC3540071 DOI: 10.1371/journal.pone.0053766] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/05/2012] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Methodology/Principal Findings Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. Conclusion This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.
Collapse
Affiliation(s)
- Gabriela Silva
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Bruno A. Cardoso
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Hélio Belo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Medina Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
16
|
DI FAZIO PIETRO, MONTALBANO ROBERTA, QUINT KARL, ALINGER BEATE, KEMMERLING RALF, KIESSLICH TOBIAS, OCKER MATTHIAS, NEUREITER DANIEL. The pan-deacetylase inhibitor panobinostat modulates the expression of epithelial-mesenchymal transition markers in hepatocellular carcinoma models. Oncol Lett 2013; 5:127-134. [PMID: 23255907 PMCID: PMC3525501 DOI: 10.3892/ol.2012.951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023] Open
Abstract
Deacetylase inhibitors (DACis) represent a novel therapeutic option for human cancers by classically affecting proliferation or apoptosis. Since transdifferentiation and dedifferentiation play a key role in carcinogenesis, we investigated the epigenetic influence on the molecular differentiation status in human hepatocellular carcinoma (HCC) models. Markers of differentiation, including cytokeratin (Ck) 7, Ck8, Ck18, Ck19, Ck20, vimentin, sonic hedgehog homolog (SHH), smoothened (Smo), patched (Ptc), glioma-associated oncogene homolog 1 (Gli1), CD133, octamer-binding transcription factor 4 (Oct4) and β-catenin, were examined in the human HCC cell lines HepG2 and Hep3B in vitro and in vivo (xenograft model) using quantitative real-time PCR and immunohistochemistry following treatment with the pan-DACi panobinostat (LBH589). Compared to untreated controls, treated HepG2 xenografts, and to a lesser extent cell lines, demonstrated a significant increase of differentiation markers Ck7 and Ck19 (classical cholangiocellular type) and Ck8 and Ck18 (classical HCC type), and a decreased level of dedifferentiation markers vimentin (mesenchymal) and SHH/Ptc (embryonic), paralleled with a more membranous expression of β-catenin. These findings were dose-dependently correlated with tumor size, necrosis rate, microvessel density and mitosis/Ki-67-associated proliferation rate. Our results demonstrate that the differentiation status of human HCC cells is influenced by the pan-DACi panobinostat, indicating that this treatment may influence the epithelial-mesenchymal transition (EMT) status related to metastasis and aggressiveness.
Collapse
Affiliation(s)
- PIETRO DI FAZIO
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - ROBERTA MONTALBANO
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - KARL QUINT
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - BEATE ALINGER
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| | - RALF KEMMERLING
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| | - TOBIAS KIESSLICH
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| | - MATTHIAS OCKER
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - DANIEL NEUREITER
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
- Correspondence to: Dr Daniel Neureiter, Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 48 Müllner Hauptstrasse, Salzburg 5020, Austria, E-mail:
| |
Collapse
|
17
|
Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial-mesenchymal-transition in human cancer. Mol Clin Oncol 2012; 1:3-11. [PMID: 24649114 DOI: 10.3892/mco.2012.28] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 09/07/2012] [Indexed: 02/06/2023] Open
Abstract
Development and tissue homeostasis as well as carcinogenesis share the evolutionary conserved process of epithelial-mesenchymal transition (EMT). EMT enables differentiated epithelial cells to trans-differentiate to a mesenchymal phenotype which is associated with diverse cellular properties including altered morphology, migration and invasion and stemness. In physiological development and tissue homeostasis, EMT exerts beneficial functions for structured tissue formation and maintenance. Under pathological conditions, EMT causes uncontrolled tissue repair and organ fibrosis, as well as the induction of tumor growth, angiogenesis and metastasis in the context of cancer progression. Particularly, the metastatic process is essentially linked to diverse EMT-driven functions which give the mesenchymal differentiated tumor cells the capacity to migrate and form micrometastases in distant organs. Recent analyses of the mechanisms controlling EMT revealed a significant epigenetic regulatory impact reflecting the reversible nature of EMTs. As several approaches of epigenetic therapy are already under clinical evaluation, including inhibitors of DNA methyl transferase and histone deacetylase, targeting the epigenetic regulation of EMT may represent a promising therapeutic option in the future. Therefore, we undertook this review to reassess the current knowledge on the roles of epigenetic control in the regulation of EMT in human cancer. These recent findings are discussed in view of their implications on future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Tobias Kiesslich
- Institute of Pathology; ; Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | | |
Collapse
|