1
|
Lin XH, Cai HM, Yan ZQ, Liao SQ, Lv MN, Wu CY, Li J, Hu JJ, Xiao WW, Zhang JF, Qi NS, Sun MF. Ancylostoma ceylanicum Infection in a Miniature Schnauzer Dog Breed. Acta Parasitol 2022; 67:1416-1420. [PMID: 35773568 DOI: 10.1007/s11686-022-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Canine hookworm disease is a global zoonotic parasitic disease caused by a variety of nematodes in families Ancylostomatidae, including Ancylostoma spp., Necator spp., and Uncinaria spp., in the small intestine (mainly the duodenum) of dogs. The disease is widely distributed in China. The purpose of this study is to systematically diagnose and treat canine hookworm disease through the case of miniaturization Schnauzer dog feed infected with A. ceylanicum, so as to provide experimental basis for subsequent prevention and control of canine hookworm disease. METHODS In the current study, we isolated hookworm eggs from a diseased miniature schnauzer, then the polymerase chain reaction (PCR) was used to amplify the ITS1-5.8S-ITS2 gene sequence from genomic DNA extracted from hookworms. Phylogenetic analysis based on ITS1-5.8S-ITS2 gene sequence sequences was inferred using MEGA-X. After phylogenetic analysis, etiologic and symptomatic therapies were used to treat the canine hookworm disease. RESULTS The sequencing results showed that the length of the ITS1-5.8S-ITS2 gene sequence was approximately 960 bp, and ITS1 and ITS2 were extracted to analyze similarity with other hookworms to build a phylogenetic tree. After phylogenetic analysis, the results showed that the diseased miniature schnauzer was infected by A. ceylanicum. Using etiologic and symptomatic therapies, the sick dog with an A. ceylanicum infection was also treated for 5 days. CONCLUSIONS To our knowledge, this is the first report of diagnosis and treatment for canine hookworm disease in Guangzhou city. In addition, with the improvement of economic level, the scale of pet dog breeding is also increasing. The diagnostic methods and treatment schemes adopted in this report will help to standardize the prevention and control of canine hookworm disease.
Collapse
Affiliation(s)
- Xu-Hui Lin
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Hai-Ming Cai
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Zhuan-Qiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Shen-Quan Liao
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Min-Na Lv
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Cai-Yan Wu
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Juan Li
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Jun-Jing Hu
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Wen-Wan Xiao
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Jian-Fei Zhang
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Nan-Shan Qi
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Ming-Fei Sun
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Woods GM, Lyons AB, Bettiol SS. A Devil of a Transmissible Cancer. Trop Med Infect Dis 2020; 5:tropicalmed5020050. [PMID: 32244613 PMCID: PMC7345153 DOI: 10.3390/tropicalmed5020050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Devil facial tumor disease (DFTD) encompasses two independent transmissible cancers that have killed the majority of Tasmanian devils. The cancer cells are derived from Schwann cells and are spread between devils during biting, a common behavior during the mating season. The Centers for Disease Control and Prevention (CDC) defines a parasite as "An organism that lives on or in a host organism and gets its food from, or at, the expense of its host." Most cancers, including DFTD, live within a host organism and derive resources from its host, and consequently have parasitic-like features. Devil facial tumor disease is a transmissible cancer and, therefore, DFTD shares one additional feature common to most parasites. Through direct contact between devils, DFTD has spread throughout the devil population. However, unlike many parasites, the DFTD cancer cells have a simple lifecycle and do not have either independent, vector-borne, or quiescent phases. To facilitate a description of devil facial tumor disease, this review uses life cycles of parasites as an analogy.
Collapse
Affiliation(s)
- Gregory M. Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Correspondence:
| | - A. Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (A.B.L.); (S.S.B.)
| | - Silvana S. Bettiol
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (A.B.L.); (S.S.B.)
| |
Collapse
|
3
|
Salvucci E. The human-microbiome superorganism and its modulation to restore health. Int J Food Sci Nutr 2019; 70:781-795. [DOI: 10.1080/09637486.2019.1580682] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- E. Salvucci
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales; Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba
| |
Collapse
|
4
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Bhattacharjee D, Sau S, Das J, Bhadra A. Free-ranging dogs prefer petting over food in repeated interactions with unfamiliar humans. ACTA ACUST UNITED AC 2017; 220:4654-4660. [PMID: 29038310 DOI: 10.1242/jeb.166371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022]
Abstract
Dogs (Canis lupus familiaris) are the first species to have been domesticated and, unlike other domesticated species, they have developed a special bond with their owners. The ability to respond to human gestures and language, and the hypersocial behaviours of dogs are considered key factors that have led them to become man's best friend. Free-ranging dogs provide an excellent model system for understanding the dog-human relationship in various social contexts. In India, free-ranging dogs occur in all possible human habitations. They scavenge among garbage, beg for food from humans, give birth in dens close to human habitations, and establish social bonds with people. However, there is ample dog-human conflict on the streets, leading to morbidity and mortality of dogs. Hence, the ability to assess an unfamiliar human before establishing physical contact could be adaptive for dogs, especially in the urban environment. We tested a total of 103 adult dogs to investigate their response to immediate social and long-term food and social rewards. The dogs were provided a choice of obtaining food either from an experimenter's hand or the ground. The dogs avoided making physical contact with the unfamiliar human. While immediate social reward was not effective in changing this response, the long-term test showed a strong effect of social contact. Our results revealed that these dogs tend to build trust based on affection, not food. This study provides significant insights into the dynamics of dog-human interactions on the streets and subsequent changes in behaviour of dogs through the process of learning.
Collapse
Affiliation(s)
- Debottam Bhattacharjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Shubhra Sau
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Jayjit Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Anindita Bhadra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
6
|
Singh US, Siwal N, Pande V, Das A. Can Mixed Parasite Infections Thwart Targeted Malaria Elimination Program in India? BIOMED RESEARCH INTERNATIONAL 2017; 2017:2847548. [PMID: 28900620 PMCID: PMC5576395 DOI: 10.1155/2017/2847548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
India is highly endemic to malaria with prevalence of all five species of human malaria parasites of Plasmodium genus. India is set for malaria elimination by 2030. Since cases of mixed Plasmodium species infections remain usually undetected but cause huge disease burden, in order to understand the distributional prevalence of both monospecies infections and mixed species infections in India, we collated published data on the differential infection incidences of the five different malaria parasites based on PCR diagnostic assay. About 11% of total cases were due to mixed species infection. Among several interesting observations on both single and mixed parasitic infections, incidences of Plasmodium falciparum monoinfection were found to be significantly higher than P. vivax monoinfection. Also, P. malariae seems to be emerging as a potential malaria threat in India. Putting all the facts together, it appears that the dream of achieving malaria elimination in India will not be completely successful without dealing with mixed species infection.
Collapse
Affiliation(s)
- Upasana Shyamsunder Singh
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| | - Nisha Siwal
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 263001, India
| | - Aparup Das
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| |
Collapse
|
7
|
du Toit JT, Cross PC, Valeix M. Managing the Livestock–Wildlife Interface on Rangelands. RANGELAND SYSTEMS 2017. [DOI: 10.1007/978-3-319-46709-2_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Parreira DR, Jansen AM, Abreu UGP, Macedo GC, Silva ARS, Mazur C, Andrade GB, Herrera HM. Health and epidemiological approaches of Trypanosoma evansi and equine infectious anemia virus in naturally infected horses at southern Pantanal. Acta Trop 2016; 163:98-102. [PMID: 27497875 DOI: 10.1016/j.actatropica.2016.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022]
Abstract
Equine infectious anemia virus (EIAV) and Trypanossoma evansi are endemic in Brazilian Pantanal Biome, an important area for livestock production. In this sense, we evaluated the epidemiological single and co-infection effects of T. evansi and EIAV in naturally infected horses in the southern Pantanal wetland by serological tests and hematological assays. Both higher seroprevalence and heath poor condition of the sampled animals were associated with differences in horse management between farms. We found that the negative animals for both infectious agents (NN) represented the major group in F1 (37%), and the smallest group in F2 (19%). Furthermore, we recorded higher EIAV seroprevalence (56%) in F2, compared to F1 (38%). We observed that T. evansi infection was mostly related to young horses, as seen by their higher seroprevalence, ranging from 70.7% in the beginning of the rainy season to 81% in the end of flood period, in comparison with the values of 42% and 68%, respectively, in working animals. on the other hand, working animals showed a higher seroprevalence for EIAV (48%) in both seasons than young horses. We observed that the management of working horses could be a risk factor of EIAV infection. On the other hand, as T. evansi is maintained in the study region by many species of wild mammals, the mechanical transmission through blood-sucking vectors ensures the infection to horses since early. Our results showed that single or co-infection by EIAV and T. evansi caused different degree of anemia in the infected animals. Moreover, the health of horses in Brazilian Pantanal is also influenced by differences in horse management and environmental circumstances.
Collapse
Affiliation(s)
| | - Ana M Jansen
- Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, CEP 21040-900, Brazil
| | - Urbano G P Abreu
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Pantanal, Corumbá, CEP 79320-900, Brazil
| | - Gabriel C Macedo
- Universidade Católica Dom Bosco - UCDB, Campo Grande, CEP 79117-900, Brazil
| | - Antônia R S Silva
- Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, CEP 23890-000, Brazil
| | - Carlos Mazur
- Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, CEP 23890-000, Brazil
| | - Gisele B Andrade
- Universidade Católica Dom Bosco - UCDB, Campo Grande, CEP 79117-900, Brazil
| | - Heitor M Herrera
- Universidade Católica Dom Bosco - UCDB, Campo Grande, CEP 79117-900, Brazil.
| |
Collapse
|
9
|
Vaumourin E, Vourc'h G, Gasqui P, Vayssier-Taussat M. The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasit Vectors 2015; 8:545. [PMID: 26482351 PMCID: PMC4617890 DOI: 10.1186/s13071-015-1167-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Most parasites co-occur with other parasites, although the importance of such multiparasitism has only recently been recognised. Co-infections may result when hosts are independently infected by different parasites at the same time or when interactions among parasite species facilitate co-occurrence. Such interactions can have important repercussions on human or animal health because they can alter host susceptibility, infection duration, transmission risks, and clinical symptoms. These interactions may be synergistic or antagonistic and thus produce diverse effects in infected humans and animals. Interactions among parasites strongly influence parasite dynamics and therefore play a major role in structuring parasite populations (both within and among hosts) as well as host populations. However, several methodological challenges remain when it comes to detecting parasite interactions. The goal of this review is to summarise current knowledge on the causes and consequences of multiparasitism and to discuss the different methods and tools that researchers have developed to study the factors that lead to multiparasitism. It also identifies new research directions to pursue.
Collapse
Affiliation(s)
- Elise Vaumourin
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France. .,USC BIPAR, INRA-ANSES-ENVA, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | - Patrick Gasqui
- UR346 Animal Epidemiology Research Unit, INRA, Saint Genès Champanelle, France.
| | | |
Collapse
|
10
|
Hellard E, Fouchet D, Vavre F, Pontier D. Parasite-Parasite Interactions in the Wild: How To Detect Them? Trends Parasitol 2015; 31:640-652. [PMID: 26440785 DOI: 10.1016/j.pt.2015.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 07/06/2015] [Accepted: 07/31/2015] [Indexed: 01/26/2023]
Abstract
Inter-specific interactions between parasites impact on parasite intra-host dynamics, host health, and disease management. Identifying and understanding interaction mechanisms in the wild is crucial for wildlife disease management. It is however complex because several scales are interlaced. Parasite-parasite interactions are likely to occur via mechanisms at the within-host level, but also at upper levels (host population and community). Furthermore, interactions occurring at one level of organization spread to upper levels through cascade effects. Even if cascade effects are important confounding factors, we argue that we can also benefit from them because upper scales often provide a way to survey a wider range of parasites at lower cost. New protocols and theoretical studies (especially across scales) are necessary to take advantage of this opportunity.
Collapse
Affiliation(s)
- Eléonore Hellard
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; Percy FitzPatrick Institute, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - David Fouchet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; LabEx Ecofect, Ecoevolutionary Dynamics of Infectious Diseases, University of Lyon, France
| | - Fabrice Vavre
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; LabEx Ecofect, Ecoevolutionary Dynamics of Infectious Diseases, University of Lyon, France
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; LabEx Ecofect, Ecoevolutionary Dynamics of Infectious Diseases, University of Lyon, France
| |
Collapse
|
11
|
Salvucci E. Selfishness, warfare, and economics; or integration, cooperation, and biology. Front Cell Infect Microbiol 2012; 2:54. [PMID: 22919645 PMCID: PMC3417387 DOI: 10.3389/fcimb.2012.00054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
The acceptance of Darwin's theory of evolution by natural selection is not complete and it has been pointed out its limitation to explain the complex processes that constitute the transformation of species. It is necessary to discuss the explaining power of the dominant paradigm. It is common that new discoveries bring about contradictions that are intended to be overcome by adjusting results to the dominant reductionist paradigm using all sorts of gradations and combinations that are admitted for each case. In addition to the discussion on the validity of natural selection, modern findings represent a challenge to the interpretation of the observations with the Darwinian view of competition and struggle for life as theoretical basis. New holistic interpretations are emerging related to the Net of Life, in which the interconnection of ecosystems constitutes a dynamic and self-regulating biosphere: viruses are recognized as a macroorganism with a huge collection of genes, most unknown that constitute the major planet's gene pool. They play a fundamental role in evolution since their sequences are capable of integrating into the genomes in an “infective” way and become an essential part of multicellular organisms. They have content with “biological sense” i.e., they appear as part of normal life processes and have a serious role as carrier elements of complex genetic information. Antibiotics are cell signals with main effects on general metabolism and transcription on bacterial cells and communities. The hologenome theory considers an organism and all of its associated symbiotic microbes (parasites, mutualists, synergists, amensalists) as a result of symbiopoiesis. Microbes, helmints, that are normally understood as parasites are cohabitants and they have cohabited with their host and drive the evolution and existence of the partners. Each organism is the result of integration of complex systems. The eukaryotic organism is the result of combination of bacterial, virus, and eukaryotic DNA and it is the result of the interaction of its own genome with the genome of its microbiota, and their metabolism are intertwined (as a “superorganism”) along evolution. The darwinian paradigm had its origin in the free market theories and concepts of Malthus and Spencer. Then, nature was explained on the basis of market theories moving away from an accurate explanation of natural phenomena. It is necessary to acknowledge the limitations of the dominant dogma. These new interpretations about biological processes, molecules, roles of viruses in nature, and microbial interactions are remarkable points to be considered in order to construct a solid theory adjusted to the facts and with less speculations and tortuous semantic traps.
Collapse
Affiliation(s)
- Emiliano Salvucci
- Consejo Nacional de Investigaciones Cientificas y Técnicas Argentina.
| |
Collapse
|