1
|
Zhang X, Peng B, Zhang S, Wang J, Yuan X, Peled S, Chen W, Ding J, Li W, Zhang A, Wu Q, Stavrovskaya IG, Luo C, Sinha B, Tu Y, Yuan X, Li M, Liu S, Fu J, Aziz-Sultan A, Kristal BS, Alterovitz G, Du R, Zhou S, Wang X. The MT1 receptor as the target of ramelteon neuroprotection in ischemic stroke. J Pineal Res 2024; 76:e12925. [PMID: 37986632 PMCID: PMC10872556 DOI: 10.1111/jpi.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Stroke is the leading cause of death and disability worldwide. Novel and effective therapies for ischemic stroke are urgently needed. Here, we report that melatonin receptor 1A (MT1) agonist ramelteon is a neuroprotective drug candidate as demonstrated by comprehensive experimental models of ischemic stroke, including a middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia in vivo, organotypic hippocampal slice cultures ex vivo, and cultured neurons in vitro; the neuroprotective effects of ramelteon are diminished in MT1-knockout (KO) mice and MT1-KO cultured neurons. For the first time, we report that the MT1 receptor is significantly depleted in the brain of MCAO mice, and ramelteon treatment significantly recovers the brain MT1 losses in MCAO mice, which is further explained by the Connectivity Map L1000 bioinformatic analysis that shows gene-expression signatures of MCAO mice are negatively connected to melatonin receptor agonist like Ramelteon. We demonstrate that ramelteon improves the cerebral blood flow signals in ischemic stroke that is potentially mediated, at least, partly by mechanisms of activating endothelial nitric oxide synthase. Our results also show that the neuroprotection of ramelteon counteracts reactive oxygen species-induced oxidative stress and activates the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Ramelteon inhibits the mitochondrial and autophagic death pathways in MCAO mice and cultured neurons, consistent with gene set enrichment analysis from a bioinformatics perspective angle. Our data suggest that Ramelteon is a potential neuroprotective drug candidate, and MT1 is the neuroprotective target for ischemic stroke, which provides new insights into stroke therapy. MT1-KO mice and cultured neurons may provide animal and cellular models of accelerated ischemic damage and neuronal cell death.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Biopharmaceutical Sciences, College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Bin Peng
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jian Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiong Yuan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sharon Peled
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wu Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jinyin Ding
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiaofeng Wu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Irina G. Stavrovskaya
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Research Foundation of The City University of New York, New York, NY, USA
| | - Chengliang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yanyang Tu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaojing Yuan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Xi'an, Shaanxi, China
- The Joslin Beth Israel Deaconess Foot Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce S. Kristal
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the Ube3a Gene. Cells 2022; 11:cells11182815. [PMID: 36139390 PMCID: PMC9496699 DOI: 10.3390/cells11182815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficits in maternally inherited UBE3A. The disease is characterized by intellectual disability, impaired motor skills, and behavioral deficits, including increased anxiety and autism spectrum disorder features. The mouse models used so far in AS research recapitulate most of the cardinal AS characteristics. However, they do not mimic the situation found in the majority of AS patients who have a large deletion spanning 4–6 Mb. There is also a large variability in phenotypes reported in the available models, which altogether limits development of therapeutics. Therefore, we have generated a mouse model in which the Ube3a gene is deleted entirely from the 5′ UTR to the 3′ UTR of mouse Ube3a isoform 2, resulting in a deletion of 76 kb. To investigate its phenotypic suitability as a model for AS, we employed a battery of behavioral tests directed to reveal AS pathology and to find out whether this model better mirrors AS development compared to other available models. We found that the maternally inherited Ube3a-deficient line exhibits robust motor dysfunction, as seen in the rotarod and DigiGait tests, and displays abnormalities in additional behavioral paradigms, including reduced nest building and hypoactivity, although no apparent cognitive phenotype was observed in the Barnes maze and novel object recognition tests. The AS mice did, however, underperform in more complex cognition tasks, such as place reversal in the IntelliCage system, and exhibited a different circadian rhythm activity pattern. We show that the novel UBE3A-deficient model, based on a whole-gene deletion, is suitable for AS research, as it recapitulates important phenotypes characteristic of AS. This new mouse model provides complementary possibilities to study the Ube3a gene and its function in health and disease as well as possible therapeutic interventions to restore function.
Collapse
|
3
|
Zhang H, Liu M, Kim HT, Feeley BT, Liu X. Preconditioning improves muscle regeneration after ischemia-reperfusion injury. J Orthop Res 2021; 39:1889-1897. [PMID: 33232533 PMCID: PMC9257970 DOI: 10.1002/jor.24909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 02/04/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a critical condition associated with serious clinical manifestations. Extensive research has focused on the strategies increasing organ tolerance to IRI. Preconditioning (PC) has been shown to provide protection to various organs toward IRI. However, the underlying mechanisms remain unknown. This study aimed to evaluate the role of PC on muscle regeneration after IRI and the potential underlying mechanisms. Three-month-old male UCP-1 reporter mice underwent unilateral hindlimb IRI with or without PC, the tissue viability and injury index were measured at 24 h after IRI. Hindlimb gait, muscle contractility, muscle histology were analyzed at 2 weeks after IRI. In another group of animals, β3 adrenergic receptor (β3AR) agonist amibegron and β3AR antagonist SR-59230A were administrated before PC/IRI, the hindlimb function and muscle regeneration were evaluated at 2 weeks after IRI. Our results showed that PC has little effect on improving the tissue viability at the acute phase of IRI, but it showed a long-term beneficial role of improving hindlimb function and muscle regeneration as evidenced by increased central nuclei regenerating myofibers. The effects of PC are related to inducing muscle fibro-adipogenic progenitor (FAP) brown/beige-like adipocyte (BAT) differentiation. Amibegron treatment displayed a similar role of PC while SR-59230A abolished the effect of PC. This study suggests PC has a beneficial role in promoting muscle regeneration after IRI through β3AR signaling pathway-stimulated FAP-BAT differentiation.
Collapse
Affiliation(s)
- He Zhang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA,Department of Exercise Physiology, Beijing Sports University, Beijing, China
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Hubert T. Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Homer-Bouthiette C, Xiao L, Hurley MM. Gait disturbances and muscle dysfunction in fibroblast growth factor 2 knockout mice. Sci Rep 2021; 11:11005. [PMID: 34040128 PMCID: PMC8154953 DOI: 10.1038/s41598-021-90565-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is important in musculoskeletal homeostasis, therefore the impact of reduction or Fgf2 knockout on skeletal muscle function and phenotype was determined. Gait analysis as well as muscle strength testing in young and old WT and Fgf2KO demonstrated age-related gait disturbances and reduction in muscle strength that were exacerbated in the KO condition. Fgf2 mRNA and protein were significantly decreased in skeletal muscle of old WT compared with young WT. Muscle fiber cross-sectional area was significantly reduced with increased fibrosis and inflammatory infiltrates in old WT and Fgf2KO vs. young WT. Inflammatory cells were further significantly increased in old Fgf2KO compared with old WT. Lipid-related genes and intramuscular fat was increased in old WT and old Fgf2KO with a further increase in fibro-adipocytes in old Fgf2KO compared with old WT. Impaired FGF signaling including Increased β-Klotho, Fgf21 mRNA, FGF21 protein, phosphorylated FGF receptors 1 and 3, was observed in old WT and old Fgf2KO. MAPK/ ERK1/2 was significantly increased in young and old Fgf2KO. We conclude that Fgf2KO, age-related decreased FGF2 in WT mice, and increased FGF21 in the setting of impaired Fgf2 expression likely contribute to impaired skeletal muscle function and sarcopenia in mice.
Collapse
Affiliation(s)
- C Homer-Bouthiette
- Yale Internal Medicine Residency Program, Yale New Haven Hospital, New Haven, CT, 06510, USA
| | - L Xiao
- Department of Medicine, School of Medicine, UConn Health, University of Connecticut, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Marja M Hurley
- Department of Medicine, School of Medicine, UConn Health, University of Connecticut, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Goswami N, Aleem M, Manda K. Clinical relevance of chronic neuropathic pain phenotypes in mice: A comprehensive behavioral analysis. Behav Brain Res 2020; 400:113055. [PMID: 33290758 DOI: 10.1016/j.bbr.2020.113055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
Despite a large number of preclinical studies performed each year, the safe and effective therapeutic interventions for chronic pain are scant. Therefore, it appears that pre-clinical modeling requires a systematically organized behavioral test paradigm to quantify the response of animals for a specific pain state. The present study, therefore, conceptualized a test battery to evaluate the behavioral changes in mice following neuropathic pain. We employed sciatic nerve chronic constriction injury (CCI) in C57BL/6 J mice to model chronic pain state. Mice were monitored for thermal hyperalgesia and grip strength for 30 days. Subsequently, mice underwent a behavioral test battery consisting of the nociceptive threshold, the affective and cognitive functions and motor coordination, and strength. Our results showed that CCI mice are insensitive to thermal stimuli. However, nerve-injured mice showed significant changes in neuromuscular coordination, basal anxiety, and hedonic state. Such impaired neuromuscular coordination is indicative of disability rather than the actual pain phenotype. While using the digital gait analysis, our study revealed rationales for the insensitivity of CCI mice to thermal stimuli. Our results suggest that the predictive validity of the CCI model necessitates a comprehensive behavioral test battery to select the clinically relevant and measurable phenotype to quantify chronic neuropathic pain.
Collapse
Affiliation(s)
- Nidhi Goswami
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India.
| |
Collapse
|
6
|
Wang Z, Liu X, Jiang K, Kim H, Kajimura S, Feeley BT. Intramuscular Brown Fat Activation Decreases Muscle Atrophy and Fatty Infiltration and Improves Gait After Delayed Rotator Cuff Repair in Mice. Am J Sports Med 2020; 48:1590-1600. [PMID: 32282238 DOI: 10.1177/0363546520910421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Successful repair of large and massive rotator cuff (RC) tears remains a challenge at least partially because of secondary muscle atrophy and fatty infiltration. β3 Adrenergic agonists are a group of drugs that promote fat resorption through "white fat browning" of intramuscular stem cells. PURPOSE To test the role of a β3 adrenergic receptor agonist, amibegron, in improving muscle quality and forelimb function in a delayed RC repair model via promoting brown/beige adipose tissue activation. STUDY DESIGN Controlled laboratory study. METHODS Three-month-old PDGFRα-GFP reporter mice, wild type C57BL/6J mice, and uncoupling protein 1 (UCP-1) knockout mice underwent unilateral supraspinatus tendon transection with a 6-week delayed tendon repair. Animals with sham surgery served as controls. Amibegron was given either immediately after tendon transection or after repair. Gait analysis was conducted to measure forelimb function at 6 weeks after tendon repair. Animals were sacrificed at 6 weeks after repair. Supraspinatus muscles were harvested and analyzed histologically. Reverse transcription polymerase chain reaction was performed to quantify gene expression related to atrophy, fibrosis, and fatty infiltration. RESULTS Histology of PDGFRα reporter mice showed significantly increased UCP-1 expression, suggesting white fat browning in muscle after RC repair. As administered either immediately after tendon transection or after tendon repair, amibegron significantly reduced muscle atrophy and fatty infiltration and resumed normal upper extremity gait in wild type mice. However, the effect of amibegron was not present in UCP-1 knockout mice, suggesting that the effect of amibegron in treating RC muscle atrophy and fatty infiltration is through a UCP 1-dependent mechanism. CONCLUSION Amibegron reduced muscle atrophy and fatty infiltration and improved forelimb function after delayed RC repair through a UCP 1-dependent mechanism. This may be an effective clinical treatment strategy for patients to improve muscle quality after RC repair. CLINICAL RELEVANCE β3 Adrenergic agonists may serve as a new pharmacologic modality to treat RC muscle atrophy and fatty infiltration to improve clinical outcome of RC repair.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.,San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Kunqi Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hubert Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shingo Kajimura
- Diabetes Center, Department of Cell and Tissue Biology, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Brian T Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
High Speed Ventral Plane Videography as a Convenient Tool to Quantify Motor Deficits during Pre-Clinical Experimental Autoimmune Encephalomyelitis. Cells 2019; 8:cells8111439. [PMID: 31739589 PMCID: PMC6912314 DOI: 10.3390/cells8111439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used multiple sclerosis animal model. EAE mice typically develop motor deficits in a caudal-to-rostral pattern when inflammatory lesions have already developed. However, to monitor more subtle behavioral deficits during lesion development (i.e., pre-clinical phase), more sophisticated methods are needed. Here, we investigated whether high speed ventral plane videography can be applied to monitor early motor deficits during ‘pre-clinical’ EAE. For this purpose, EAE was induced in C57BL/6 mice and gait abnormalities were quantified using the DigiGait™ apparatus. Gait deficits were related to histopathological changes. 10 out of 10 control (100%), and 14 out of 18 (77.8%) pre-clinical EAE mice could be evaluated using DigiGait™. EAE severity was not influenced by DigiGait™-related mice handlings. Most gait parameters recorded from day 6 post-immunization until the end of the experiment were found to be stable in control mice. During the pre-clinical phase, when conventional EAE scorings failed to detect any functional impairment, EAE mice showed an increased Swing Time, increased %Swing Stride, decreased %Stance Stride, decreased Stance/Swing, and an increased Absolute Paw Angle. In summary, DigiGait™ is more sensitive than conventional scoring approaches to study motor deficits during the EAE pre-clinical phase.
Collapse
|
8
|
Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, Sakimura K, Ito S. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018; 11:63. [PMID: 30359304 PMCID: PMC6202847 DOI: 10.1186/s13041-018-0407-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2018] [Indexed: 01/17/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1 (Caskin1) is a direct binding partner of the synaptic adaptor protein CASK. Because Caskin1 forms homo-multimers and binds not only CASK but also other neuronal proteins in vitro, it is anticipated to have neural functions; but its exact role in mammals remains unclear. Previously, we showed that the concentration of Caskin1 in the spinal dorsal horn increases under chronic pain. To characterize this protein, we generated Caskin1-knockout (Caskin1-KO) mice and specific anti-Caskin1 antibodies. Biochemical and immunohistochemical analyses demonstrated that Caskin1 was broadly distributed in the whole brain and spinal cord, and that it primarily localized at synapses. To elucidate the neural function of Caskin1 in vivo, we subjected Caskin1-KO mice to comprehensive behavioral analysis. The mutant mice exhibited differences in gait, enhanced nociception, and anxiety-like behavior relative to their wild-type littermates. In addition, the knockouts exhibited strong freezing responses, with or without a cue tone, in contextual and cued-fear conditioning tests as well as low memory retention in the Barnes Maze test. Taken together, these results suggest that Caskin1 contributes to a wide spectrum of behavioral phenotypes, including gait, nociception, memory, and stress response, in broad regions of the central nervous system.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194 Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
- Department of Neurology, University of California, San Francisco, 94158 USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638 Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| |
Collapse
|
9
|
Wang Z, Liu X, Davies MR, Horne D, Kim H, Feeley BT. A Mouse Model of Delayed Rotator Cuff Repair Results in Persistent Muscle Atrophy and Fatty Infiltration. Am J Sports Med 2018; 46:2981-2989. [PMID: 30198747 PMCID: PMC6730552 DOI: 10.1177/0363546518793403] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff (RC) tears are common tendon injuries seen in orthopaedic patients. Successful repair of large and massive RC tears remains a challenge due to our limited understanding of the pathophysiological features of this injury. Clinically relevant small animal models that can be used to study the pathophysiological response to repair are limited by the lack of chronic repair models. PURPOSE To develop a highly clinically relevant mouse model of delayed RC repair. STUDY DESIGN Controlled laboratory study. METHODS Three-month-old C57BL/6J mice underwent unilateral supraspinatus (SS) and infraspinatus (IS) tendon tear with immediate, 2-week delayed, or 6-week delayed tendon repair. Animals with no repair or sham surgery served as controls. Gait analysis was conducted to measure shoulder function at 2 weeks and 6 weeks after surgery. Animals were sacrificed 6 weeks after the last surgery. Shoulder joint, SS, and IS muscles were harvested and analyzed histologically. Ex vivo mechanical testing of intact and repaired SS and IS tendons was conducted. Reverse-transcriptase polymerase chain reaction was performed on SS and IS muscles to quantify atrophy, fibrosis, and fatty infiltration-related gene expression. RESULTS Histological and tendon mechanical testing showed that torn tendons could be successfully repaired as late as 6 weeks after transection. However, significant atrophy and fatty infiltration of muscle, with impaired shoulder function, were persistent in the 6-week delayed repair group. Shoulder function correlated with the severity of RC muscle weight loss and fatty infiltration. CONCLUSION We successfully developed a clinically relevant mouse model of delayed RC repair. Six-week delayed RC repair resulted in persistent muscle atrophy and fatty infiltration with inferior shoulder function compared with acute repair. CLINICAL RELEVANCE Our novel mouse model could serve as a powerful tool to understand the pathophysiological and cellular/molecular mechanisms of RC muscle and tendon degeneration, eventually improving our strategies for treating and repairing RC tears.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Michael R. Davies
- Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Devante Horne
- Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Hubert Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Brian T. Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| |
Collapse
|
10
|
Yang Q, Li Y, Zhang X, Chen D. Zac1/GPR39 phosphorylating CaMK-II contributes to the distinct roles of Pax3 and Pax7 in myogenic progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:407-419. [DOI: 10.1016/j.bbadis.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
|
11
|
Kondori NR, Paul P, Robbins JP, Liu K, Hildyard JCW, Wells DJ, de Belleroche JS. Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons. PLoS One 2017; 12:e0188912. [PMID: 29194436 PMCID: PMC5711026 DOI: 10.1371/journal.pone.0188912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disorder characterised by selective loss of motor neurons leading to fatal paralysis. Current therapeutic approaches are limited in their effectiveness. Substantial advances in understanding ALS disease mechanisms has come from the identification of pathogenic mutations in dominantly inherited familial ALS (FALS). We previously reported a coding mutation in D-amino acid oxidase (DAOR199W) associated with FALS. DAO metabolises D-serine, an essential co-agonist at the N-Methyl-D-aspartic acid glutamate receptor subtype (NMDAR). Using primary motor neuron cultures or motor neuron cell lines we demonstrated that expression of DAOR199W, promoted the formation of ubiquitinated protein aggregates, activated autophagy and increased apoptosis. The aim of this study was to characterise the effects of DAOR199Win vivo, using transgenic mice overexpressing DAOR199W. Marked abnormal motor features, e.g. kyphosis, were evident in mice expressing DAOR199W, which were associated with a significant loss (19%) of lumbar spinal cord motor neurons, analysed at 14 months. When separated by gender, this effect was greater in females (26%; p< 0.0132). In addition, we crossed the DAOR199W transgenic mouse line with the SOD1G93A mouse model of ALS to determine whether the effects of SOD1G93A were potentiated in the double transgenic line (DAOR199W/SOD1G93A). Although overall survival was not affected, onset of neurological signs was significantly earlier in female double transgenic animals than their female SOD1G93A littermates (125 days vs 131 days, P = 0.0239). In summary, some significant in vivo effects of DAOR199W on motor neuron function (i.e. kyphosis and loss of motor neurons) were detected which were most marked in females and could contribute to the earlier onset of neurological signs in double transgenic females compared to SOD1G93A littermates, highlighting the importance of recognizing gender effects present in animal models of ALS.
Collapse
Affiliation(s)
- Nazanin Rahmani Kondori
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Praveen Paul
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Jacqueline P. Robbins
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Ke Liu
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - John C. W. Hildyard
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Dominic J. Wells
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Jacqueline S. de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Cucarián JD, León LA, Luna GA, Torres MR, Corredor K, Cardenas P. F. CARACTERIZACIÓN TEMPORO-ESPACIAL DEL PATRÓN DE MARCHA EN ROEDORES COMO MODELO ANIMAL DE LESIÓN CEREBRAL CEREBROVASCULAR. ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n3.65244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En la investigación sobre movimiento, la experimentación animal ha proporcionado fundamentación científica para la investigación clínica, mejorando procedimientos diagnósticos y de rehabilitación. Lesiones cerebrales en roedores pueden ser usadas para modelar síntomas locomotores, sensoriales y/o cognitivos. Con el propósito de determinar la funcionalidad locomotriz y sensorial en roedores, se han propuesto varios métodos de evaluación y pronóstico clínico para identificar y evaluar adaptaciones estructurales y mecanismos de neuro-recuperación. Esto ha permitido que métodos de intervención terapéutica, como el ejercicio físico, sean utilizados para restaurar funciones sensitivo-motoras y cognitivas en roedores y humanos. La extrapolación (translación) de los resultados de investigaciones en ciencias básicas a áreas clínicas supone la continua cooperación y retroalimentación entre investigadores y profesionales de la salud, favoreciendo la formulación de intervenciones terapéuticas más eficaces basadas en resultados obtenidos de la experimentación animal. El objetivo de esta revisión es exponer las principales deficiencias motoras y los métodos empleados para determinar la dificultad motriz en la marcha en roedores con lesión cerebrovascular, para lo cual se realizó una revisión de literatura, sobre términos definidos (MeSH), en las bases de datos PsychINFO, Medline y Web of Science, entre enero de 2000 y enero de 2017. Se excluyeron artículos de carácter cualitativo o narrativo, sin revisión por pares, disertaciones, tesis o trabajos de grado y resúmenes de conferencias. Se revisan algunas manifestaciones clínicas, su efecto en la locomotricidad en roedores, algunas metodologías usadas para generar lesiones y para estudiar la función motriz, los principales métodos de medición y algunos aspectos translacionales.
Collapse
|
13
|
Pardes AM, Freedman BR, Soslowsky LJ. Ground reaction forces are more sensitive gait measures than temporal parameters in rodents following rotator cuff injury. J Biomech 2015; 49:376-81. [PMID: 26768230 DOI: 10.1016/j.jbiomech.2015.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 12/23/2022]
Abstract
Gait analysis is a quantitative, non-invasive technique that can be used to investigate functional changes in animal models of musculoskeletal disease. Changes in ground reaction forces following injury have been observed that coincide with differences in tissue mechanical and histological properties during healing. However, measurement of these kinetic gait parameters can be laborious compared to the simpler and less time-consuming analysis of temporal gait parameters alone. We compared the sensitivity of temporal and kinetic gait parameters in detecting functional changes following rotator cuff injury in rats. Although these parameters were strongly correlated, temporal measures were unable to detect greater than 50% of the functional gait differences between injured and uninjured animals identified simultaneously by ground reaction forces. Regression analysis was used to predict ground reaction forces from temporal parameters. This model improved the ability of temporal parameters to identify known functional changes, but only when these differences were large in magnitude (i.e., between injured vs. uninjured animals, but not between different post-operative treatments). The results of this study suggest that ground reaction forces are more sensitive measures of limb/joint function than temporal parameters following rotator cuff injury in rats. Therefore, although gait analysis systems without force plates are typically efficient and easy to use, they may be most appropriate for use when major functional changes are expected.
Collapse
Affiliation(s)
- A M Pardes
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - B R Freedman
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - L J Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Costamagna D, Quattrocelli M, van Tienen F, Umans L, de Coo IFM, Zwijsen A, Huylebroeck D, Sampaolesi M. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 2015; 8:73-87. [PMID: 26450990 PMCID: PMC4710210 DOI: 10.1093/jmcb/mjv059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023] Open
Abstract
Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium Laboratory of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mattia Quattrocelli
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Florence van Tienen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lieve Umans
- Laboratory for Developmental Signalling, VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Irineus F M de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - An Zwijsen
- Laboratory for Developmental Signalling, VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven, Belgium Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death Dis 2014; 5:e1448. [PMID: 25299773 PMCID: PMC4237240 DOI: 10.1038/cddis.2014.401] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 01/12/2023]
Abstract
Somatic stem cells hold attractive potential for the treatment of muscular dystrophies (MDs). Mesoangioblasts (MABs) constitute a myogenic subset of muscle pericytes and have been shown to efficiently regenerate dystrophic muscles in mice and dogs. In addition, HLA-matched MABs are currently being tested in a phase 1 clinical study on Duchenne MD patients (EudraCT #2011-000176-33). Many reports indicate that the Notch pathway regulates muscle regeneration and satellite cell commitment. However, little is known about Notch-mediated effects on other resident myogenic cells. To possibly potentiate MAB-driven regeneration in vivo, we asked whether Notch signaling played a pivotal role in regulating MAB myogenic capacity. Through different approaches of loss- and gain-of-function in murine and human MABs, we determined that the interplay between Delta-like ligand 1 (Dll1)-activated Notch1 and Mef2C supports MAB commitment in vitro and ameliorates engraftment and functional outcome after intra-arterial delivery in dystrophic mice. Furthermore, using a transgenic mouse model of conditional Dll1 deletion, we demonstrated that Dll1 ablation, either on the injected cells, or on the receiving muscle fibers, impairs MAB regenerative potential. Our data corroborate the perspective of advanced combinations of cell therapy and signaling tuning to enhance therapeutic efficaciousness of somatic stem cells.
Collapse
|
16
|
Abstract
The gene encoding the WD repeat-containing protein 81 (WDR81) has recently been described as the disease locus in a consanguineous family that suffers from cerebellar ataxia, mental retardation, and quadrupedal locomotion syndrome (CAMRQ2). Adult mice from the N-ethyl-N-nitrosourea-induced mutant mouse line nur5 display tremor and an abnormal gait, as well as Purkinje cell degeneration and photoreceptor cell loss. We have used polymorphic marker mapping to demonstrate that affected nur5 mice carry a missense mutation, L1349P, in the Wdr81 gene. Moreover, homozygous nur5 mice that carry a wild-type Wdr81 transgene are rescued from the abnormal phenotype, indicating that Wdr81 is the causative gene in nur5. WDR81 is expressed in Purkinje cells and photoreceptor cells, among other CNS neurons, and like the human mutation, the nur5 modification lies in the predicted major facilitator superfamily domain of the WDR81 protein. Electron microscopy analysis revealed that a subset of mitochondria in Purkinje cell dendrites of the mutant animals displayed an aberrant, large spheroid-like structure. Moreover, immunoelectron microscopy and analysis of mitochondrial-enriched cerebellum fractions indicate that WDR81 is localized in mitochondria of Purkinje cell neurons. Because the nur5 mouse mutant demonstrates phenotypic similarities to the human disease, it provides a valuable genetic model for elucidating the pathogenic mechanism of the WDR81 mutation in CAMRQ2.
Collapse
|
17
|
Hampton TG, Kale A, McCue S, Bhagavan HN, Vandongen C. Developmental Changes in the ECG of a Hamster Model of Muscular Dystrophy and Heart Failure. Front Pharmacol 2012; 3:80. [PMID: 22629245 PMCID: PMC3355504 DOI: 10.3389/fphar.2012.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/12/2012] [Indexed: 12/14/2022] Open
Abstract
Aberrant autonomic signaling is being increasingly recognized as an important symptom in neuromuscular disorders. The δ-sarcoglycan-deficient BIO TO-2 hamster is recognized as a good model for studying mechanistic pathways and sequelae in muscular dystrophy and heart failure, including autonomic nervous system (ANS) dysfunction. Recent studies using the TO-2 hamster model have provided promising preclinical results demonstrating the efficacy of gene therapy to treat skeletal muscle weakness and heart failure. Methods to accelerate preclinical testing of gene therapy and new drugs for neuromuscular diseases are urgently needed. The purpose of this investigation was to demonstrate a rapid non-invasive screen for characterizing the ANS imbalance in dystrophic TO-2 hamsters. Electrocardiograms were recorded non-invasively in conscious ∼9-month old TO-2 hamsters (n = 10) and non-myopathic F1B control hamsters (n = 10). Heart rate was higher in TO-2 hamsters than controls (453 ± 12 bpm vs. 311 ± 25 bpm, P < 0.01). Time domain heart rate variability, an index of parasympathetic tone, was lower in TO-2 hamsters (12.2 ± 3.7 bpm vs. 38.2 ± 6.8, P < 0.05), as was the coefficient of variance of the RR interval (2.8 ± 0.9% vs. 16.2 ± 3.4%, P < 0.05) compared to control hamsters. Power spectral analysis demonstrated reduced high frequency and low frequency contributions, indicating autonomic imbalance with increased sympathetic tone and decreased parasympathetic tone in dystrophic TO-2 hamsters. Similar observations in newborn hamsters indicate autonomic nervous dysfunction may occur quite early in life in neuromuscular diseases. Our findings of autonomic abnormalities in newborn hamsters with a mutation in the δ-sarcoglycan gene suggest approaches to correct modulation of the heart rate as prevention or therapy for muscular dystrophies.
Collapse
|
18
|
Allen KD, Mata BA, Gabr MA, Huebner JL, Adams SB, Kraus VB, Schmitt DO, Setton LA. Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis. Arthritis Res Ther 2012; 14:R78. [PMID: 22510443 PMCID: PMC3446452 DOI: 10.1186/ar3801] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/08/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022] Open
Abstract
Introduction Osteoarthritis (OA) results in pain and disability; however, preclinical OA models often focus on joint-level changes. Gait analysis is one method used to evaluate both preclinical OA models and OA patients. The objective of this study is to describe spatiotemporal and ground reaction force changes in a rat medial meniscus transection (MMT) model of knee OA and to compare these gait measures with assays of weight bearing and tactile allodynia. Methods Sixteen rats were used in the study. The medial collateral ligament (MCL) was transected in twelve Lewis rats (male, 200 to 250 g); in six rats, the medial meniscus was transected, and the remaining six rats served as sham controls. The remaining four rats served as naïve controls. Gait, weight-bearing as measured by an incapacitance meter, and tactile allodynia were assessed on postoperative days 9 to 24. On day 28, knee joints were collected for histology. Cytokine concentrations in the serum were assessed with a 10-plex cytokine panel. Results Weight bearing was not affected by sham or MMT surgery; however, the MMT group had decreased mechanical paw-withdrawal thresholds in the operated limb relative to the contralateral limb (P = 0.017). The gait of the MMT group became increasingly asymmetric from postoperative days 9 to 24 (P = 0.020); moreover, MMT animals tended to spend more time on their contralateral limb than their operated limb while walking (P < 0.1). Ground reaction forces confirmed temporal shifts in symmetry and stance time, as the MMT group had lower vertical and propulsive ground reaction forces in their operated limb relative to the contralateral limb, naïve, and sham controls (P < 0.05). Levels of interleukin 6 in the MMT group tended to be higher than naïve controls (P = 0.072). Histology confirmed increased cartilage damage in the MMT group, consistent with OA initiation. Post hoc analysis revealed that gait symmetry, stance time imbalance, peak propulsive force, and serum interleukin 6 concentrations had significant correlations to the severity of cartilage lesion formation. Conclusion These data indicate significant gait compensations were present in the MMT group relative to medial collateral ligament (MCL) injury (sham) alone and naïve controls. Moreover, these data suggest that gait compensations are likely driven by meniscal instability and/or cartilage damage, and not by MCL injury alone.
Collapse
Affiliation(s)
- Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|