1
|
Mansouri M, O'Brien EP, Mondal K, Chen CC, Drummond JL, Hanley L, Rockne KJ. Stoichiometric models of sucrose and glucose fermentation by oral streptococci: Implications for free acid formation and enamel demineralization. Dent Mater 2023; 39:351-361. [PMID: 36906504 PMCID: PMC10162441 DOI: 10.1016/j.dental.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES The objective of this study is to develop stoichiometric models of sugar fermentation and cell biosynthesis for model cariogenic Streptococcus mutans and non-cariogenic Streptococcus sanguinis to better understand and predict metabolic product formation. METHODS Streptococcus mutans (strain UA159) and Streptococcus sanguinis (strain DSS-10) were grown separately in bioreactors fed brain heart infusion broth supplemented with either sucrose or glucose at 37 °C. Cell mass concentration and fermentation products were measured at different hydraulic residence times (HRT) to determine cell growth yield. RESULTS Sucrose growth yields were 0.080 ± 0.0078 g cell/g and 0.18 ± 0.031 g cell/g for S. sanguinis and S. mutans, respectively. For glucose, this reversed, with S. sanguinis having a yield of 0.10 ± 0.0080 g cell/g and S. mutans 0.053 ± 0.0064 g cell/g. Stoichiometric equations to predict free acid concentrations were developed for each test case. Results demonstrate that S. sanguinis produces more free acid at a given pH than S. mutans due to lesser cell yield and production of more acetic acid. Greater amounts of free acid were produced at the shortest HRT of 2.5 hr compared to longer HRTs for both microorganisms and substrates. SIGNIFICANCE The finding that the non-cariogenic S. sanguinis produces greater amounts of free acids than S. mutans strongly suggests that bacterial physiology and environmental factors affecting substrate/metabolite mass transfer play a much greater role in tooth or enamel/dentin demineralization than acidogenesis. These findings enhance the understanding of fermentation production by oral streptococci and provide useful data for comparing studies under different environmental conditions.
Collapse
Affiliation(s)
- Marzieh Mansouri
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Evan P O'Brien
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Karabi Mondal
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Chien-Chia Chen
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - James L Drummond
- Professor Emeritus of Restorative Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Karl J Rockne
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Avraham M, Steinberg D, Barak T, Shalish M, Feldman M, Sionov RV. Improved Anti-Biofilm Effect against the Oral Cariogenic Streptococcus mutans by Combined Triclosan/CBD Treatment. Biomedicines 2023; 11:biomedicines11020521. [PMID: 36831057 PMCID: PMC9953046 DOI: 10.3390/biomedicines11020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Streptococcus mutans is a Gram-positive bacterium highly associated with dental caries, and it has a strong biofilm-forming ability, especially in a sugar-rich environment. Many strategies have been undertaken to prevent dental caries by targeting these bacteria. Recently, we observed that a sustained-release varnish containing triclosan and cannabidiol (CBD) was more efficient than each compound alone in preventing biofilm formation by the fungus Candida albicans, which is frequently involved in oral infections together with S. mutans. It was therefore inquiring to study the effect of this drug combination on S. mutans. We observed that the combined treatment of triclosan and CBD had stronger anti-bacterial and anti-biofilm activity than each compound alone, thus enabling the use of lower concentrations of each drug to achieve the desired effect. The combined drug treatment led to an increase in the SYTO 9low, propidium iodide (PI)high bacterial population as analyzed by flow cytometry, indicative for bacteria with disrupted membrane. Both triclosan and CBD induced membrane hyperpolarization, although there was no additive effect on this parameter. HR-SEM images of CBD-treated bacteria show the appearance of elongated and swollen bacteria with several irregular septa structures, and upon combined treatment with triclosan, the bacteria took on a swollen ellipse and sometimes oval morphology. Increased biofilm formation was observed at sub-MIC concentrations of each compound alone, while combining the drugs at these sub-MIC concentrations, the biofilm formation was prevented. The inhibition of biofilm formation was confirmed by CV biomass staining, MTT metabolic activity, HR-SEM and live/dead together with exopolysaccharide (EPS) staining visualized by spinning disk confocal microscopy. Importantly, the concentrations required for the anti-bacterial and anti-biofilm activities toward S. mutans were non-toxic to the normal Vero epithelial cells. In conclusion, the data obtained in this study propose a beneficial role of combined triclosan/CBD treatment for potential protection against dental caries.
Collapse
Affiliation(s)
- Maayan Avraham
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Division of Biotechnology, Strauss Campus, Hadassah Academic College, Jerusalem 9514223, Israel
| | - Doron Steinberg
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tamar Barak
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miriam Shalish
- Hadassah Medical Center, Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mark Feldman
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- Faculty of Dental Medicine, Ein Kerem Campus, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Correspondence:
| |
Collapse
|
3
|
Xue VW, Yin IX, Niu JY, Lo ECM, Chu CH, Zhao IS. Effects of a 445 nm diode laser and silver diamine fluoride in preventing enamel demineralisation and inhibiting cariogenic bacteria. J Dent 2022; 126:104309. [PMID: 36162639 DOI: 10.1016/j.jdent.2022.104309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To study the effects of a 445 nm diode laser (L) and silver diamine fluoride (F) on preventing enamel demineralisation and inhibiting cariogenic bacteria. METHODS Thirty-three enamel slices were sectioned each into four blocks for four groups to receive L with F (LF), F, L and Water (W, control). Ten blocks from each group were used to evaluate demineralization. Surface morphology, lesion depth and nanohardness of the blocks after pH-cycling were studied by scanning electron microscopy (SEM), nanohardness test, and micro-computed tomography, respectively. Twenty-three blocks per group were used for biofilm assessment. Morphology, viability, and growth kinetics of the Streptococcus mutans biofilm were assessed by SEM, confocal laser scanning microscopy, and the counting of colony-forming units (CFUs), respectively. RESULTS SEM images of LF-treated enamel showed an intact surface compared with other groups. Nanohardness (GPa) for LF, F, L and W were 1.43±0.17, 1.01±0.11, 1.04±0.13 and 0.73±0.14, respectively (p<0.001; LF>F, L>W). Their lesion depths (µm) were 46±8, 52±6, 88±13 and 111±9, respectively (p<0.001; LF, F<L<W). SEM showed few bacteria for LF and F compared with other groups. Their dead-live ratio were 1.67±0.13, 1.60±0.15, 0.39±0.05 and 0.32±0.05, respectively (p<0.001; LF, F>L>W). Log CFUs for LF, F, L and W were 4.2±0.3, 4.5±0.2, 7.9±0.3 and 9.4±0.2, respectively (p<0.05; LF<F<L<W). Two-way ANOVA analysis revealed an interaction effect on nanohardness and Log CFUs between the laser irradiation and SDF treatment (p<0.001). CONCLUSION This study showed a superior caries preventive effect of a combined treatment of the diode laser and SDF. Because diode laser and SDF are affordable and readily available, clinicians can provide this treatment to their patients for caries prevention. CLINICAL SIGNIFICANCE STATEMENT Diode lasers are handy, afforable and readily avaliable to clinicians. This study provides information of use of 445 nm diode laser for caries prevetion. The laser irradiation hopefully can be added before conventional topical SDF application.
Collapse
Affiliation(s)
- Vicky Wenqing Xue
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, 518000, China; Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Edward Chin Man Lo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Farheen S, Oanz AM, Khan N, Umar MS, Jamal F, Altaf I, Kashif M, Alshameri AW, Somavarapu S, Wani IA, Khan S, Owais M. Fabrication of Microbicidal Silver Nanoparticles: Green Synthesis and Implications in the Containment of Bacterial Biofilm on Orthodontal Appliances. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.780783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among various metal-based nanoparticles, silver nanoparticles (AgNPs) manifest superior inhibitory effects against several microorganisms. In fact, the AgNP-based treatment has been reported to inhibit both sensitive and resistant isolates of bacteria and other disease-causing microbes with equal propensity. Keeping this fact into consideration, we executed bio-mediated synthesis of AgNPs employing extract of flower and various other parts (such as bud and leaf) of the Hibiscus rosa-sinensis plant. The physicochemical characterization of as-synthesized AgNPs was executed employing transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy, etc. The as-synthesized AgNPs demonstrated strong antimicrobial activity against both Gram-positive and Gram-negative bacteria with equal propensity. The as-synthesized AgNPs successfully inhibited Streptococcus mutans (S. mutans), one of the main causative bacteria responsible for dental caries. Considering the fact that orthodontic appliances facilitate infliction of the oral cavity with a range of microbes including S. mutans, we determined the growth inhibitory and anti-adherence activities of AgNPs on orthodontic appliances. We performed microbiological assays employing AgNPs adsorbed onto the surface of nickel–titanium (Ni-Ti) orthodontic wires. A topographic analysis of the decontaminated Ni-Ti orthodontic wires was performed by scanning electron microscopy. In addition to antimicrobial and anti-biofilm activities against oral S. mutans, the as-fabricated AgNPs demonstrated significant inhibitory and anti-biofilm properties against other biofilm-forming bacteria such as Escherichia coli and Listeria monocytogenes.
Collapse
|
5
|
Boddapati S, Gummadi SN. A comprehensive review on mutan (a mixed linkage of α-1-3 and α-1-6 glucans) from bacterial sources. Biotechnol Genet Eng Rev 2021; 37:208-237. [PMID: 34816783 DOI: 10.1080/02648725.2021.2003072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutan is an extracellular sticky polymer having α-1-3 and α-1-6 glycosidic linkages with a large diversity in molecular weights and structures depending on the source. These compounds are reported to be highly thermostable and also have potential physiochemical and biological applications. The main aim of this review is to provide an overview of glucosyltransferases and their role in mutan synthesis. The production strategies and structural properties of bacterial mutans are discussed with a goal to improve production efficiency. The physicochemical features, chemical modifications, potential industrial applications and future prospects are also discussed. According to data, mutan and its derivatives will play a larger role in medicinal sectors and as thermoplastics in the near future.Abbreviations: ABTS: 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid; BHI: Brain heart infusion broth; 13C (HSQC) NMR: Heteronuclear Single Quantum Coherence NMR; CBMs: Carbohydrate binding modules; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FTIR: Fourier-transform infrared spectroscopy; GC-MS: Gas chromatography-mass spectrometry; GPC: Gel permeation chromatography; Gtfs: Glucosyltransferases; 1H (DQF-COSY): Double-quantum filtered correlation spectroscopy; HPAEC-PAD: High-performance anion exchange chromatography with pulsed amperometric detection; HPLC: High performance liquid chromatography; HPSEC-RI: High-performance size exclusive chromatography coupled with refractive index; HPSEC-MALLS: High-performance size exclusive chromatography with multi-angle laser light scattering detection; MALDI-TOF: Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry; Mw: Weight-average molecular weight; MWD: Molecular weight distribution; NMR: Nuclear magnetic resonance spectroscopy; TEM: Transmission electron microscopy; THB: Todd Hewitt Broth; TTY: Tryticase tryptose yeast extract broth.
Collapse
Affiliation(s)
- Sirisha Boddapati
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bjm School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| | - Sathyanaryana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bjm School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| |
Collapse
|
6
|
Zhu B, Song L, Kong X, Macleod LC, Xu P. A Novel Regulator Modulates Glucan Production, Cell Aggregation and Biofilm Formation in Streptococcus sanguinis SK36. Front Microbiol 2018; 9:1154. [PMID: 29896189 PMCID: PMC5987052 DOI: 10.3389/fmicb.2018.01154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus sanguinis is an early colonizer of tooth surfaces and a key player in plaque biofilm development. However, the mechanism of biofilm formation of S. sanguinis is still unclear. Here, we showed that deletion of a transcription factor, brpL, promotes cell aggregation and biofilm formation in S. sanguinis SK36. Glucan, a polysaccharide synthesized from sucrose, was over-produced and aggregated in the biofilm of ΔbrpL, which was necessary for better biofilm formation ability of ΔbrpL. Quantitative RT-PCR demonstrated that gtfP was significantly up-regulated in ΔbrpL, which increased the productions of water-insoluble and water-soluble glucans. The ΔbrpLΔgtfP double mutant decreased biofilm formation ability of ΔbrpL to a level similar like that of ΔgtfP. Interestingly, the biofilm of ΔbrpL had an increased tolerance to ampicillin treatment, which might be due to better biofilm formation ability through the mechanisms of cellular and glucan aggregation. RNA sequencing and quantitative RT-PCR revealed the modulation of a group of genes in ΔbrpL was mediated by activating the expression of ciaR, another gtfP-related biofilm formation regulator. Double deletion of brpL and ciaR decreased biofilm formation ability to the phenotype of a ΔciaR mutant. Additionally, RNA sequencing elucidated a broad range of genes, related to carbohydrate metabolism and uptake, were activated in ΔbrpL. SSA_0222, a gene involved in the phosphotransferase system, was dramatically up-regulated in ΔbrpL and essential for S. sanguinis survival under our experimental conditions. In summary, brpL modulates glucan production, cell aggregation and biofilm formation by regulating the expression of ciaR in S. sanguinis SK36.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lei Song
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Bodiba DC, Prasad P, Srivastava A, Crampton B, Lall NS. Antibacterial Activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans. Pharmacogn Mag 2018; 14:76-80. [PMID: 29576705 PMCID: PMC5858246 DOI: 10.4103/pm.pm_102_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Background: Curative plants have reportedly been used to make chewing sticks/toothbrushes intended for the treatment of oral diseases. Objective: The in vitro antibacterial activities of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica were evaluated against Streptococcus mutans, along with the cytotoxicity and antioxidant and synergistic potentials. The effect of M. indica on the expression of crucial virulence genes spaP and gtfB of S. mutans was determined. Materials and Methods: The antibacterial activity was determined using a modified microdilution method. The antioxidant potential was evaluated using diphenyl picrylhydrazyl (DPPH), Griess reagent, and nitroblue tetrazolium calorimetric assays. The synergistic activity was investigated using a modified checkerboard method, while the cytotoxicity was determined according to a cell proliferation 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Reverse transcription was the chosen method for determining the difference in expression of the spaP and gtfB genes after treatment with the plant sample. Results: M. indica and A. indica had the highest antibacterial activity at concentrations of 0.3 mg/ml and 6.25 mg/ml, respectively. A. indica had the best free radical scavenging of DPPH, exhibiting 50% inhibition at 28.72 μg/ml; while M. indica showed better superoxide scavenging potential than the positive control quercetin. Both M. indica and A. indica had adequate activity against the nitric oxide-free radical (12.87 and 18.89 μg/ml, respectively). M. indica selectively reduced the expression of the gtfB gene, indicating a mechanism involving Glucotranferases, specifically targeting bacterial attachment. SUMMARY Mangifera indica and Azadirachta indica had very good antibacterial activity against Streptococcus mutans and moderate toxicity against Vero cells M. indica had the best antioxidant capacity overall M. indica reduced the expression of gtfB gene at 0.5 mg/ml.
Abbreviations used: AA: Ascorbic acid; BHI: Brain–heart infusion; CHX: Chlorhexidine; DPPH: Diphenyl picrylhydrazyl; DMSO: Dimethlysulfoxide; NBT: Nitroblue tetrazolium; NO: Nitric oxide;
Collapse
Affiliation(s)
- Dikonketso Cathrine Bodiba
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Preety Prasad
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Department of Botany, St. Xavier's College, Ranchi, Jharkhand, India
| | - Ajay Srivastava
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.,Department of Botany, St. Xavier's College, Ranchi, Jharkhand, India
| | - Brigdet Crampton
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Namrita Sharan Lall
- Department of Integrated Plant and Soil Sciences (Medicinal Plant Sciences), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
ciaR impacts biofilm formation by regulating an arginine biosynthesis pathway in Streptococcus sanguinis SK36. Sci Rep 2017; 7:17183. [PMID: 29215019 PMCID: PMC5719415 DOI: 10.1038/s41598-017-17383-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/21/2017] [Indexed: 01/02/2023] Open
Abstract
Streptococcus sanguinis is an early colonizer of the tooth surface and competes with oral pathogens such as Streptococcus mutans to maintain oral health. However, little is known about its mechanism of biofilm formation. Here, we show that mutation of the ciaR gene, encoding the response regulator of the CiaRH two-component system in S. sanguinis SK36, produced a fragile biofilm. Cell aggregation, gtfP gene expression and water-insoluble glucan production were all reduced, which suggested polysaccharide production was decreased in ΔciaR. RNA sequencing and qRT-PCR revealed that arginine biosynthesis genes (argR, argB, argC, argG, argH and argJ) and two arginine/histidine permease genes (SSA_1568 and SSA_1569) were upregulated in ΔciaR. In contrast to ΔciaR, most of strains constructed to contain deletions in each of these genes produced more biofilm and water-insoluble glucan than SK36. A ΔciaRΔargB double mutant was completely restored for the gtfP gene expression, glucan production and biofilm formation ability that was lost in ΔciaR, indicating that argB was essential for ciaR to regulate biofilm formation. We conclude that by promoting the expression of arginine biosynthetic genes, especially argB gene, the ciaR mutation reduced polysaccharide production, resulting in the formation of a fragile biofilm in Streptococcus sanguinis.
Collapse
|
9
|
Gottschick C, Deng ZL, Vital M, Masur C, Abels C, Pieper DH, Rohde M, Mendling W, Wagner-Döbler I. Treatment of biofilms in bacterial vaginosis by an amphoteric tenside pessary-clinical study and microbiota analysis. MICROBIOME 2017; 5:119. [PMID: 28903767 PMCID: PMC5598074 DOI: 10.1186/s40168-017-0326-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial vaginosis (BV) is the most common vaginal syndrome among women in their reproductive years. It is associated with an increased risk of acquiring sexually transmitted infections and complications like preterm labor. BV is characterized by a high recurrence rate for which biofilms frequently found on vaginal epithelial cells may be a reason. RESULTS Here, we report a controlled randomized clinical trial that tested the safety and effectiveness of a newly developed pessary containing an amphoteric tenside (WO3191) to disrupt biofilms after metronidazole treatment of BV. Pessaries containing lactic acid were provided to the control group, and microbial community composition was determined via Illumina sequencing of the V1-V2 region of the 16S rRNA gene. The most common community state type (CST) in healthy women was characterized by Lactobacillus crispatus. In BV, diversity was high with communities dominated by either Lactobacillus iners, Prevotella bivia, Sneathia amnii, or Prevotella amnii. Women with BV and proven biofilms had an increased abundance of Sneathia sanguinegens and a decreased abundance of Gardnerella vaginalis. Following metronidazole treatment, clinical symptoms cleared, Nugent score shifted to Lactobacillus dominance, biofilms disappeared, and diversity (Shannon index) was reduced in most women. Most of the patients responding to therapy exhibited a L. iners CST. Treatment with WO 3191 reduced biofilms but did not prevent recurrence. Women with high diversity after antibiotic treatment were more likely to develop recurrence. CONCLUSIONS Stabilizing the low diversity healthy flora by promoting growth of health-associated Lactobacillus sp. such as L. crispatus may be beneficial for long-term female health. TRIAL REGISTRATION ClinicalTrials.gov NCT02687789.
Collapse
Affiliation(s)
- Cornelia Gottschick
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Zhi-Luo Deng
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marius Vital
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Clarissa Masur
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstrasse 56, 33611 Bielefeld, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstrasse 56, 33611 Bielefeld, Germany
| | - Dietmar H. Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Werner Mendling
- German Center for Infections in Gynecology and Obstetrics, Wuppertal, Germany
| | - Irene Wagner-Döbler
- Research Group Microbial Communication, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Liu J, Stone VN, Ge X, Tang M, Elrami F, Xu P. TetR Family Regulator brpT Modulates Biofilm Formation in Streptococcus sanguinis. PLoS One 2017; 12:e0169301. [PMID: 28046010 PMCID: PMC5207742 DOI: 10.1371/journal.pone.0169301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022] Open
Abstract
Biofilms are a key component in bacterial communities providing protection and contributing to infectious diseases. However, mechanisms involved in S. sanguinis biofilm formation have not been clearly elucidated. Here, we report the identification of a novel S. sanguinis TetR repressor, brpT (Biofilm Regulatory Protein TetR), involved in biofilm formation. Deletion of brpT resulted in a significant increase in biofilm formation. Interestingly, the mutant accumulated more water soluble and water insoluble glucans in its biofilm compared to the wild-type and the complemented mutant. The brpT mutation led to an altered biofilm morphology and structure exhibiting a rougher appearance, uneven distribution with more filaments bound to the chains. RNA-sequencing revealed that gtfP, the only glucosyltransferase present in S. sanguinis, was significantly up-regulated. In agreement with these findings, we independently observed that deletion of gtfP in S. sanguinis led to reduced biofilm and low levels of water soluble and insoluble glucans. These results suggest that brpT is involved in the regulation of the gtfP-mediated exopolysaccharide synthesis and controls S. sanguinis biofilm formation. The deletion of brpT may have a potential therapeutic application in regulating S. sanguinis colonization in the oral cavity and the prevention of dental caries.
Collapse
Affiliation(s)
- Jinlin Liu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Victoria N. Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Madison Tang
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fadi Elrami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci 2014; 6:195-204. [PMID: 25059251 PMCID: PMC5153587 DOI: 10.1038/ijos.2014.38] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms.
Collapse
|
12
|
Winkelströter LK, Teixeira FBDR, Silva EP, Alves VF, De Martinis ECP. Unraveling microbial biofilms of importance for food microbiology. MICROBIAL ECOLOGY 2014; 68:35-46. [PMID: 24370864 DOI: 10.1007/s00248-013-0347-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.
Collapse
Affiliation(s)
- Lizziane Kretli Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Av. do Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
13
|
da Silva BR, de Freitas VAA, Carneiro VA, Arruda FVS, Lorenzón EN, de Aguiar ASW, Cilli EM, Cavada BS, Teixeira EH. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci. Peptides 2013; 42:78-83. [PMID: 23340019 DOI: 10.1016/j.peptides.2012.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
The peptide LYS-[TRP(6)]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK-NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37°C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL(-1)). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes.
Collapse
Affiliation(s)
- Bruno Rocha da Silva
- BioMol Group/DPML/LIBS, Integrate Biomolecules Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|