1
|
AbouSamra MM. Liposomal nano-carriers mediated targeting of liver disorders: mechanisms and applications. J Liposome Res 2024; 34:728-743. [PMID: 38988127 DOI: 10.1080/08982104.2024.2377085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.
Collapse
Affiliation(s)
- Mona M AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Devi OS, Singh SS, Rana K, Singh SJ, Singh WS. Purification and characterization of an asialofetuin specific lectin from the rhizome of Xanthosoma violaceum Schott. Protein Expr Purif 2024; 213:106357. [PMID: 37652391 DOI: 10.1016/j.pep.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Lectins are proteins or glycoproteins that bind specifically and reversibly to the carbohydrate or glycoconjugates. A new lectin is purified from the rhizome of Xanthosoma violaceum Schott. by successive steps of ammonium sulfate fractionation and affinity chromatography with asialofetuin as ligand. The purified lectin was found to be a homotetramer of approximately 49 kDa with a subunit molecular weight of 12 kDa linked by non-covalent bonds. Characterization of the lectin shows that the hemagglutination activity is inhibited by asialofetuin and d-galacturonic acid. Hemagglutination activity is shown only in rabbit RBC but not in the human RBC of all blood groups. It is a metal ion-independent glycoprotein of 1.87% carbohydrate content, stable upto 40 °C and pH from 5.5 to 9. The lectin shows its optimum hemagglutination activity at 0 °C-40 °C and pH 6 to 8.5. From LC-MS/MS analysis it is confirmed that the purified lectin was not purified and characterized earlier.
Collapse
Affiliation(s)
- Oinam Sangita Devi
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| | - Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India.
| | - K Rana
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| | - Sorokhaibam Jibankumar Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| | - Wayenbam Sobhachandra Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| |
Collapse
|
3
|
Jansook P, Loftsson T. Self-assembled γ-cyclodextrin as nanocarriers for enhanced ocular drug bioavailability. Int J Pharm 2022; 618:121654. [DOI: 10.1016/j.ijpharm.2022.121654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
|
4
|
Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
ApoE-modified liposomes mediate the antitumour effect of survivin promoter-driven HSVtk in hepatocellular carcinoma. Cancer Gene Ther 2019; 27:754-767. [DOI: 10.1038/s41417-019-0145-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022]
|
6
|
Singh L, Indermun S, Govender M, Kumar P, du Toit LC, Choonara YE, Pillay V. Drug Delivery Strategies for Antivirals against Hepatitis B Virus. Viruses 2018; 10:E267. [PMID: 29772748 PMCID: PMC5977260 DOI: 10.3390/v10050267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection poses a significant health challenge due to associated morbidity and mortality from cirrhosis and hepatocellular cancer that eventually results in the breakdown of liver functionality. Nanotechnology has the potential to play a pivotal role in reducing viral load levels and drug-resistant HBV through drug targeting, thus reducing the rate of evolution of the disease. Apart from tissue targeting, intracellular delivery of a wide range of drugs is necessary to exert a therapeutic action in the affected organelles. This review encompasses the strategies and techniques that have been utilized to target the HBV-infected nuclei in liver hepatocytes, with a significant look at the new insights and most recent advances in drug carriers and their role in anti-HBV therapy.
Collapse
Affiliation(s)
- Latavia Singh
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Sunaina Indermun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Mershen Govender
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
7
|
Lu J, Wang J, Ling D. Surface Engineering of Nanoparticles for Targeted Delivery to Hepatocellular Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702037. [PMID: 29251419 DOI: 10.1002/smll.201702037] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/24/2017] [Indexed: 05/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated deaths worldwide. There is a lack of efficient therapy for HCC; the only available first-line systemic drug, sorafenib, can merely improve the average survival by two months. Among the efforts to develop an efficient therapy for HCC, nanomedicine has drawn the most attention, owing to its unique features such as high drug-loading capacity, intrinsic anticancer activities, integrated diagnostic and therapeutic functionalities, and easy surface engineering with targeting ligands. Despite its tremendous advantages, no nanomedicine can be effective unless it successfully targets the tumor site, which is a challenging task. In this review, the features of HCC are described, and the physiological hurdles that prevent nanoparticles from targeting HCC are discussed. Then, the surface physicochemical factors of nanoparticles that can influence targeting efficiency are discussed. Finally, a thorough description of the physiological barriers that nanomedicine must conquer before uptake by HCC cells if possible is provided, as well as the surface engineering approaches to nanomedicine to achieve targeted delivery to HCC cells. The physiological hurdles and corresponding solutions summarized in this review provide a general guide for the rational design of HCC targeting nanomedicine systems.
Collapse
Affiliation(s)
- Jingxiong Lu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther Deliv 2017; 8:215-232. [PMID: 28222660 DOI: 10.4155/tde-2016-0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the recent approval of some gene medicines and nucleic acid drugs, further improvement of delivery techniques for these drugs is strongly required. Several delivery technologies for these drugs have been developed, in other words, viral and two types of nonviral (lipofection and polyfection) vectors. Among the polyfection system, the potential use of various cyclodextrin (CyD) derivatives and CyD-appended polymers as carriers for gene and nucleic acid drugs has been demonstrated. The polyamidoamine dendrimer (G3) conjugates with α-CyD (α-CDE (G3)) have been reported to possess noteworthy properties as DNA and nucleic acid drugs carriers. This review will focus on the attempts to develop such cell-specific drug carriers by preparing polyethylene glycol, galactose, lactose, mannose, fucose and folic acid-appended α-CDEs as tissue and cell-selective carriers of gene and nucleic acid drugs.
Collapse
|
9
|
Luo C, Chen S, Xu N, Sai WB, Zhao W, Li YC, Hu XJ, Tian H, Gao XD, Yao WB. Establishment of a fluorescence-based method to evaluate endocytosis of desialylated glycoproteins in vitro. Biomed Pharmacother 2017; 88:87-94. [PMID: 28095357 DOI: 10.1016/j.biopha.2016.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 01/12/2023] Open
Abstract
Insufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory. However, how the desialylated glycoproteins are removed and how to evaluate the ASGPRs mediated endocytosis in vitro needs further investigate. Herein we described an integrative characterization of ASGPRs in vitro to elucidate its endocytosis properties. The endocytosis was determined by a fluorescence-based quantization method. The results showed that the ASGPRs could bind to poorly sialylated glycoproteins including asialofetuin and low sialylated recombinant Factor VIIa with a relatively higher ASGPRs binding affinity, and induce a more rapid endocytosis in vitro. Moreover, the mechanism under the internalization of ASGPRs was also investigated, which was found to depend on clathrin and caveolin. Utilizing the relative fluorescence quantification can be suitable for measurement of insufficient sialylated glycoprotein endocytosis and quality control of therapeutic glycoproteins, which could be useful for the understanding of the development of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Cheng Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Na Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Wen Bo Sai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Wei Zhao
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Ying Chun Li
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Xiao Jing Hu
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Hong Tian
- Jiangsu Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210023 China
| | - Xiang Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China.
| | - Wen Bing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China.
| |
Collapse
|
10
|
Takahashi S, Tada R, Negishi Y, Aramaki Y. Mechanisms of Enhanced Antigen Delivery to Murine Dendritic Cells by the Cationic Liposomes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/oji.2017.74007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Leemans B, Gadella BM, Stout TAE, Sostaric E, Schauwer CD, Nelis H, Hoogewijs M, Van Soom A. Combined albumin and bicarbonate induces head-to-head sperm agglutination which physically prevents equine sperm–oviduct binding. Reproduction 2016; 151:313-30. [DOI: 10.1530/rep-15-0471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
In many species, sperm binding to oviduct epithelium is believed to be an essential step in generating a highly fertile capacitated sperm population primed for fertilization. In several mammalian species, this interaction is based on carbohydrate-lectin recognition.d-galactose has previously been characterized as a key molecule that facilitates sperm–oviduct binding in the horse. We used oviduct explant and oviduct apical plasma membrane (APM) assays to investigate the effects of various carbohydrates; glycosaminoglycans; lectins; S-S reductants; and the capacitating factors albumin, Ca2+and HCO3−on sperm–oviduct binding in the horse. Carbohydrate-specific lectin staining indicated thatN-acetylgalactosamine,N-acetylneuraminic acid (sialic acid) andd-mannose ord-glucose were the most abundant carbohydrates on equine oviduct epithelia, whereasd-galactose moieties were not detected. However, in a competitive binding assay, sperm–oviduct binding density was not influenced by any tested carbohydrates, glycosaminoglycans, lectins ord-penicillamine, nor did the glycosaminoglycans induce sperm tail-associated protein tyrosine phosphorylation. Furthermore,N-glycosidase F (PNGase) pretreatment of oviduct explants and APM did not alter sperm–oviduct binding density. By contrast, a combination of the sperm-capacitating factors albumin and HCO3−severely reduced (>10-fold) equine sperm–oviduct binding density by inducing rapid head-to-head agglutination, both of which events were independent of Ca2+and an elevated pH (7.9). Conversely, neither albumin and HCO3−nor any other capacitating factor could induce release of oviduct-bound sperm. In conclusion, a combination of albumin and HCO3−markedly induced sperm head-to-head agglutination which physically prevented stallion sperm to bind to oviduct epithelium.
Collapse
|
12
|
Li KT, Duan QQ, Chen Q, He JW, Tian S, Lin HD, Gao Q, Bai DQ. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells. Cancer Med 2015; 5:361-9. [PMID: 26686868 PMCID: PMC4735781 DOI: 10.1002/cam4.584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/26/2015] [Accepted: 10/11/2015] [Indexed: 11/11/2022] Open
Abstract
Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)-encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm(2) ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human gastric cancer cells.
Collapse
Affiliation(s)
- Kai-Ting Li
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin-Qin Duan
- Department of gastroenterology, Chinese Medicine Hospital of Longquan, Chengdu, China
| | - Qing Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan-Wen He
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Tian
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Dan Lin
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Gao
- Department of gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding-Qun Bai
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol 2015; 21:12022-12041. [PMID: 26576089 PMCID: PMC4641122 DOI: 10.3748/wjg.v21.i42.12022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article.
Collapse
|
14
|
Nasr M, Nafee N, Saad H, Kazem A. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. Eur J Pharm Biopharm 2014; 88:216-25. [PMID: 24813390 DOI: 10.1016/j.ejpb.2014.04.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Epirubicin (EPI), an anthracycline derivative, is one of the main line treatments for HCC. However, serious side effects including cardiomyopathy and congestive heart failure limit its long term administration. Our main goal is to develop a delivery strategy that ensures improved efficacy of the chemotherapeutic agent together with reduced cardiotoxicity. In this context, EPI was loaded in chitosan-PLGA nanoparticles linked with asialofetuin (EPI-NPs) selectively targeting hepatocytes. In an attempt to reduce cardiotoxicity, targeted EPI-NPs were coadministered with tocotrienols. EPI-NPs significantly enhanced the antiproliferative effect compared to free EPI as studied on Hep G2 cell line. Nanoencapsulated EPI injected in HCC mouse model revealed higher p53-mediated apoptosis and reduced angiogenesis in the tumor. Combined therapy of EPI-NPs with tocotrienols further enhanced apoptosis and reduced VEGF level in a dose dependent manner. Assessment of cardiotoxicity indicated that EPI-NPs diminished the high level of proinflammatory cytokine tumor necrosis factor-α (TNF-α) as well as oxidative stress-induced cardiotoxicity as manifested by reduced level of lipid peroxidation products (TBARS) and nitric oxide (NO). EPI-NPs additionally restored the diminished level of superoxide dismutase (SOD) and reduced glutathione (GSH) in the heart. Interestingly, tocotrienols provided both antitumor activity and higher protection against oxidative stress and inflammation induced by EPI in the heart. This hepatocyte-targeted biodegradable nanoparticle/tocotrienol combined therapy represents intriguing therapeutic strategy for EPI providing not only superior efficacy but also higher safety levels.
Collapse
Affiliation(s)
- Magda Nasr
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Alexandria University, Alexandria, Egypt.
| | - Hoda Saad
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Kazem
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Mastrangelo E, Mazzitelli S, Fabbri J, Rohayem J, Ruokolainen J, Nykänen A, Milani M, Pezzullo M, Nastruzzi C, Bolognesi M. Delivery of suramin as an antiviral agent through liposomal systems. ChemMedChem 2014; 9:933-9. [PMID: 24616282 DOI: 10.1002/cmdc.201300563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Indexed: 12/12/2022]
Abstract
Norovirus RNA-dependent RNA polymerase (RdRp) is a promising target enzyme for the development of new antiviral drugs. Starting from the crystal structure of norovirus RdRp, we had previously performed an in silico docking search using a library of low-molecular-weight compounds that enabled us to select molecules with predicted enzyme inhibitory activity. Among these, the polysulfonated naphthylurea suramin proved to inhibit in vitro both murine and human norovirus polymerases, with IC50 values in the low micromolar range. The negatively charged inhibitor, however, displayed poor cell permeability in cell-based experiments. Therefore, we produced different suramin-loaded liposome formulations and evaluated their activities in cell-based assays using murine norovirus cultivated in RAW 264.7 macrophages, as a model for norovirus genus. The results obtained show that suramin, when delivered through liposomes, can effectively inhibit murine norovirus replication.
Collapse
Affiliation(s)
- Eloise Mastrangelo
- Department of Biosciences & CIMAINA, University of Milano, Via Celoria 26, 20133 Milano (Italy); Biophysics Institute (CNR-IBF), Via Celoria 26, 20133 Milano (Italy)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cationic liposome-DNA complexes (lipoplexes) are used for the delivery of plasmid DNA to cultured cells and various tissues in vivo. In this chapter, we describe the preparation and evaluation of plain and targeted lipoplexes, using targeting ligands, including epidermal growth factor and transferrin. Ligand-associated lipoplexes may be used to target DNA or other nucleic acid drugs to specific cells, particularly cancer cells that overexpress the receptors for the ligands. We provide examples of the enhancement of gene expression mediated by epidermal growth factor in murine and human oral squamous cell carcinoma cells, and human hepatoblastoma and rat colon adenocarcinoma cells. We also summarize the studies on the use of transferrin-lipoplexes for enhancing gene delivery to cervical carcinoma, murine colon carcinoma, and African green monkey kidney cells. We outline two animal models in which transferrin-lipoplexes have been used for antitumor therapy by delivering either the gene encoding interleukin-12 or a suicide gene: a CT26 murine colon carcinoma, and a syngeneic, orthotopic murine oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | | |
Collapse
|
17
|
Zhao P, Astruc D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012; 7:952-72. [PMID: 22517723 DOI: 10.1002/cmdc.201200052] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Indexed: 01/05/2023]
Abstract
Taxanes have been recognized as a family of very efficient anticancer drugs, but the formulation in use for the two main taxanes-Taxol for paclitaxel and Taxotere for docetaxel-have shown dramatic side effects. Whereas several new formulations for paclitaxel have recently appeared, such as Abraxane and others currently in various phases of clinical trials, there is no new formulation in clinical trials for the other main taxane, docetaxel, except BIND-014, a polymeric nanoparticle, which recently entered phase I clinical testing. Therefore, we review herein the state of the art and recent abundance in published results of academic approaches toward nanotechnology-based drug-delivery systems containing nanocarriers and targeting agents for docetaxel formulations. These efforts will certainly enrich the spectrum of docetaxel treatments in the near future. Taxotere's systemic toxicity, low water solubility, and other side effects are significant problems that must be overcome. To avoid the limitations of docetaxel in clinical use, researchers have developed efficient drug-delivery assemblies that consist of a nanocarrier, a targeting agent, and the drug. A wide variety of such engineered nanosystems have been shown to transport and eventually vectorize docetaxel more efficiently than Taxotere in vitro, in vivo, and in pre-clinical administration. Recent progress in drug vectorization has involved a combined therapy and diagnostic ("theranostic") approach in a single drug-delivery vector and could significantly improve the efficiency of such an anticancer drug as well as other drug types.
Collapse
Affiliation(s)
- Pengxiang Zhao
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | | |
Collapse
|
18
|
|