1
|
Kennedy BE, Giacomantonio M, Murphy JP, Cutler S, Sadek M, Konda P, Paulo JA, Pathak GP, Renkens SH, Grieve S, Pol J, Gygi SP, Richardson C, Gaston D, Reiman A, Kroemer G, Elnenaei MO, Gujar SA. NAD+ depletion enhances reovirus-induced oncolysis in multiple myeloma. Mol Ther Oncolytics 2022; 24:695-706. [PMID: 35284625 PMCID: PMC8904403 DOI: 10.1016/j.omto.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.
Collapse
|
2
|
Oncolytic Virotherapy and Microenvironment in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22052259. [PMID: 33668361 PMCID: PMC7956262 DOI: 10.3390/ijms22052259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment. Despite the improvement of MM survival with the use of new drugs, MM patients still relapse and become always refractory to the treatment. The development of new therapeutic strategies targeting both tumor and microenvironment cells are necessary. Oncolytic virotherapy represent a promising approach in cancer treatment due to tumor-specific oncolysis and activation of the immune system. Different types of human viruses were checked in preclinical MM models, and the use of several viruses are currently investigated in clinical trials in MM patients. More recently, the use of alternative non-human viruses has been also highlighted in preclinical studies. This strategy could avoid the antiviral immune response of the patients against human viruses due to vaccination or natural infections, which could invalid the efficiency of virotherapy approach. In this review, we explored the effects of the main oncolytic viruses, which act through both direct and indirect mechanisms targeting myeloma and microenvironment cells inducing an anti-MM response. The efficacy of the oncolytic virus-therapy in combination with other anti-MM drugs targeting the microenvironment has been also discussed.
Collapse
|
3
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
4
|
Antibody-Based Immunotherapeutic Strategies for the Treatment of Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4956946. [PMID: 33015169 PMCID: PMC7519992 DOI: 10.1155/2020/4956946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023]
Abstract
As the most common type of cancer in the world, hematological malignancies (HM) account for 10% of all annual cancer deaths and have attracted more attention. Conventional treatments, such as chemotherapy, radiotherapy, and hematopoietic stem cell transplantation (HSCT), could relieve patients suffering HM. However, serious side effects and high costs bring patients both physical complaints and mental pressure. Recently, compared with conventional therapeutic strategies for HM patients, antibody-based immunotherapies, including cancer vaccines, oncolytic virus therapies, monoclonal antibody treatments, and CAR-T cell therapies, have displayed longer survival time and fewer adverse reactions, even though specific efficacy and safety of these antibody-based immunotherapies still need to be evaluated and improved. This review summarized the advantages of antibody-based immunotherapies over conventional treatments, as well as its existing difficulties and solutions, thereby enhancing the understanding and applications of antibody-based immunotherapies in HM treatment.
Collapse
|
5
|
Marchica V, Franceschi V, Vescovini R, Storti P, Vicario E, Toscani D, Zorzoli A, Airoldi I, Dalla Palma B, Campanini N, Martella E, Mancini C, Costa F, Donofrio G, Giuliani N. Bovine pestivirus is a new alternative virus for multiple myeloma oncolytic virotherapy. J Hematol Oncol 2020; 13:89. [PMID: 32653014 PMCID: PMC7353805 DOI: 10.1186/s13045-020-00919-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oncolytic viruses have shown promising results for the treatment of multiple myeloma. However, the use of human viruses is limited by the patients' antiviral immune response. In this study, we investigated an alternative oncolytic strategy using non-human pathogen viruses as the bovine viral diarrhea virus (BVDV) that were able to interact with CD46. METHODS We treated several human myeloma cell lines and non-myeloma cell lines with BVDV to evaluate the expression of CD46 and to study the effect on cell viability by flow cytometry. The possible synergistic effect of bortezomib in combination with BVDV was also tested. Moreover, we infected the bone marrow mononuclear cells obtained from myeloma patients and we checked the BVDV effect on different cell populations, defined by CD138, CD14, CD3, CD19, and CD56 expression evaluated by flow cytometry. Finally, the in vivo BVDV effect was tested in NOD-SCID mice injected subcutaneously with myeloma cell lines. RESULTS Human myeloma cells were selectively sensitive to BVDV treatment with an increase of cell death and, consequently, of apoptotic markers. Consistently, bone marrow mononuclear cells isolated from myeloma patients treated with BVDV, showed a significant selective decrease of the percentage of viable CD138+ cells. Interestingly, bortezomib pre-treatment significantly increased the cytotoxic effect of BVDV in myeloma cell lines with a synergistic effect. Finally, the in vitro data were confirmed in an in vivo myeloma mouse model showing that BVDV treatment significantly reduced the tumoral burden compared to the vehicle. CONCLUSIONS Overall, our data indicate, for the first time, a direct oncolytic effect of the BVDV in human myeloma cells suggesting its possible use as novel alternative anti-myeloma virotherapy strategy.
Collapse
Affiliation(s)
| | | | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emanuela Vicario
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Eugenia Martella
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Cristina Mancini
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy.
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy.
| |
Collapse
|
6
|
Villa NY, McFadden G. Virotherapy as Potential Adjunct Therapy for Graft-Vs-Host Disease. CURRENT PATHOBIOLOGY REPORTS 2018; 6:247-263. [PMID: 30595970 PMCID: PMC6290699 DOI: 10.1007/s40139-018-0186-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review discusses the pathophysiology, risk factors, and the advances in the prevention or treatment of graft-vs-host disease (GvHD) by exploiting adjunct virotherapy. In addition, nonviral adjunct therapeutic options for the prevention of GvHD in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) are discussed. The role of oncolytic viruses to treat different HSCT-eligible hematological cancers is also considered and correlated with the issue of GvHD in the context of allo-HSCT. RECENT FINDINGS Emerging therapies focused on the prevention or treatment of GvHD include the use of regulatory T cells (Tregs), mesenchymal stem cells (MSCs), microbiome manipulation, B cell inhibitors, among others. Our lab and others have reported that an oncolytic DNA virus from the Poxviridae family, called myxoma virus (MYXV), not only exhibits oncolytic activity against various hematologic malignancies like multiple myeloma (MM) or acute myeloid leukemia (AML) but also, in addition, ex vivo MYXV treatment of human allogeneic-bone marrow transplants (allo-BMT), or allo-peripheral blood mononuclear cell (allo-PBMC) transplants can abrogate GvHD in xenografted mice without impairing graft-vs-tumor (GvT) effects against residual cancer. To date, this is the first and the only oncolytic virus with a dual potential of mediating oncolysis against a residual cancer target and also inhibiting or preventing GvHD following allo-HSCT. SUMMARY This review discusses how oncolytic virotherapy can be applied as a potential adjunct therapy for the potential treatment of GvHD. In addition, we highlight major emerging nonviral therapies currently studied for the treatment or prevention of GvHD. We also review the emerging oncolytic virotherapies against different hematological cancers currently eligible for allo-HSCT and highlight the potential role of the oncolytic virus MYXV to decrease GvHD while maintaining or enhancing the positive benefits of GvT.
Collapse
Affiliation(s)
- Nancy Y. Villa
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287 USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
7
|
Cytoplasmic calcium increase via fusion with inactivated Sendai virus induces apoptosis in human multiple myeloma cells by downregulation of c-Myc oncogene. Oncotarget 2017; 7:36034-36048. [PMID: 27145280 PMCID: PMC5094981 DOI: 10.18632/oncotarget.9105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/16/2016] [Indexed: 12/16/2022] Open
Abstract
Because the emergence of drug resistance is a major limitation of current treatments for multiple myeloma (MM), it is necessary to continuously develop novel anticancer strategies. Here, using an inactivated Sendai virus (Hemagglutinating Virus of Japan; HVJ) envelope (HVJ-E), we discovered that increase of cytoplasmic Ca2+ by virus-cell fusion significantly induced apoptosis against human MM cells but not peripheral blood mononuclear cells from healthy donors. Interaction of F protein of HVJ-E with MM cells increased intracellular Ca2+ level of MMs by the induction of Ca2+ efflux from endoplasmic reticulum but not influx from extracellular region. The elevation of the Ca2+ cytoplasmic level induced SMAD1/5/8 phosphorylation and translocation into the nucleus, and SMAD1/5/8 and SMAD4 complex suppressed c-Myc transcription. Meanwhile, HVJ-E decreases S62 phosphorylation of c-Myc and promotes c-Myc protein degradation. Thus, HVJ-E-induced cell death of MM resulted from suppression of c-Myc by both destabilization of c-Myc protein and downregulation of c-Myc transcription. This study indicates that HVJ-E will be a promising tool for MM therapy.
Collapse
|
8
|
Kim B, Lee KY, Park B. Crocin Suppresses Constitutively Active STAT3 Through Induction of Protein Tyrosine Phosphatase SHP-1. J Cell Biochem 2017; 118:3290-3298. [PMID: 28295507 DOI: 10.1002/jcb.25980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
The aim of the present study is to investigate the effect of a natural compound crocin, one of the active components of saffron, on human multiple myeloma cells. Crocin effectively suppressed constitutive STAT3 activation, translocation of STAT3 to the nucleus, and its target gene expression. The suppression of STAT3 was mediated through the inhibition of activation of protein tyrosine kinases JAK1, JAK2, and c-Src. We found that crocin induced the expression of SHP-1, a tyrosine protein phosphatase, and pervanadate treatment reversed the crocin-induced downregulation of STAT3, suggesting the involvement of a protein tyrosine phosphatase. Moreover, suppression of SHP-1 by its inhibitor overturned the effect of crocin on induction of SHP-1 and the inhibition of STAT3 activation. Finally, crocin downregulated the expression of STAT3-mediated gene products including anti-apoptotic (Bcl-2), pro-apoptotic (BAX), invasive (CXCR4), angiogenic (VEGF), and cell cycle regulator (cyclin D1), which are correlated with suppression of proliferation, the accumulation of cells in sub-G1 phase of cell cycle, and induction of apoptosis. Overall, our results suggested that crocin is a novel inhibitor of STAT3 activation pathway and thus may have potential in prevention and treatment of human multiple myeloma. J. Cell. Biochem. 118: 3290-3298, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong Campus 2511 Sejong-ro, Sejong City 339-770, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
9
|
Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel) 2014; 8:1-20. [PMID: 25545164 PMCID: PMC4381198 DOI: 10.3390/ph8010001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of neoplastic plasma cells. The use of proteasome inhibitors in the treatment of MM has led to significant improvements in outcomes. This article reviews data on the use of the two approved proteasome inhibitors (bortezomib and carlfilzomib), as well as newer agents under development. Emphasis is placed on the clinical use of proteasome inhibitors, including management of side effects and combination with other agents.
Collapse
|
10
|
Kim B, Kim SH, Jeong SJ, Sohn EJ, Jung JH, Lee MH, Kim SH. Brazilin induces apoptosis and G2/M arrest via inactivation of histone deacetylase in multiple myeloma U266 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9882-9889. [PMID: 22967175 DOI: 10.1021/jf302527p] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although brazilin [7,11b-dihydrobenz(b)indeno[1,2-d]pyran-3,6a,9,10(6H)-tetrol] isolated from Caesalpinia sappan was known to have various biological activities, including anti-inflammation, antibacteria, and antiplatelet aggregation, there is no report yet on its anticancer activity. In the present study, the anticancer mechanism of brazilin was elucidated in human multiple myeloma U266 cells. We found that brazilin significantly inhibited the activity of histone deacetylases (HDACs), transcription factors involved in the regulation of apoptosis and cell cycle arrest in U266 cells. Consistently, brazilin enhanced acetylation of histone H3 at Lys 23, indicating activation of histone acetyltransferase (HAT), and also suppressed the expressions of HDAC1 and HDAC2 at both protein and mRNA levels. Additionally, brazilin significantly increased the number of sub-G1 cell population and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells undergoing apoptosis and also activated caspase-3 and regulated the expression of Bcl-2 family proteins, including Bax, Bcl-x(L), and Bcl-2 in U266 cells, indicating that brazilin induces apoptosis through the mitochondria-dependent pathway. Interestingly, cell cycle analysis revealed that brazilin induced G2/M phase arrest along with apoptosis induction. Consistently, brazilin attenuated the expression of cyclin-dependent kinases (CDKs), such as cyclin D1, cyclin B1, and cyclin E, and also activated p21 and p27 in U266 cells. Furthermore, HAT inhibitor anacardic acid reversed activation of acetyl-histone H3 and cleavage of PARP induced by brazilin, while pan-caspase inhibitor Z-VAD-FMK001 did not affect the expression of HDAC induced by brazilin that brazilin mediates apoptosis via inactivation of HDAC in U266 cells. Notably, brazilin significantly potentiated the cytotoxic effect of standard chemotherapeutic agents, such as bortezomib or doxorubicin, in U266 cells. When our findings are taken together, they suggest that brazilin has potential as a chemotherapeutic agent alone or in combination with an anticancer agent for multiple myeloma treatment.
Collapse
Affiliation(s)
- Bonglee Kim
- College of Oriental Medicine, Kyung Hee University , Seoul 130-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Naik S, Nace R, Federspiel MJ, Barber GN, Peng KW, Russell SJ. Curative one-shot systemic virotherapy in murine myeloma. Leukemia 2012; 26:1870-8. [PMID: 22425894 PMCID: PMC3411853 DOI: 10.1038/leu.2012.70] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Current therapy for multiple myeloma is complex and prolonged. Antimyeloma drugs are combined in induction, consolidation and/or maintenance protocols to destroy bulky disease, then suppress or eradicate residual disease. Oncolytic viruses have the potential to mediate both tumor debulking and residual disease elimination, but this curative paradigm remains unproven. Here we engineered an oncolytic vesicular stomatitis virus to minimize its neurotoxicity, enhance induction of antimyeloma immunity, and facilitate noninvasive monitoring of its intratumoral spread. Using high resolution imaging, autoradiography and immunohistochemistry, we demonstrate that the intravenously administered virus extravasates from tumor blood vessels in immunocompetent myeloma-bearing mice, nucleating multiple intratumoral infectious centers which expand rapidly and necrose at their centers, ultimately coalescing to cause extensive tumor destruction. This oncolytic tumor debulking phase lasts only for 72 hours after virus administration, and is completed before antiviral antibodies become detectable in the bloodstream. Anti-myeloma T cells, cross-primed as the virus-infected cells provoke an antiviral immune response, then eliminate residual uninfected myeloma cells. The study establishes a curative oncolytic paradigm for multiple myeloma where direct tumor debulking and immune eradication of minimal disease are mediated by a single intravenous dose of a single therapeutic agent. Clinical translation is underway.
Collapse
Affiliation(s)
- S Naik
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|