1
|
Sadria R, Motamed N, Saberi Anvar M, Mehrabani Yeganeh H, Poopak B. Prognostic correlation of NOTCH1 and SF3B1 mutations with chromosomal abnormalities in chronic lymphocytic leukemia patients. Cancer Rep (Hoboken) 2023; 6:e1757. [PMID: 36411516 PMCID: PMC10026310 DOI: 10.1002/cnr2.1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIM Chronic lymphocytic leukemia (CLL) is a monoclonal malignancy of B lymphocytes. Since common mutations in NOTCH1 and SF3B1, along with other possible chromosomal alterations, change disease severity and survival of patients with CLL, we aimed to evaluate the correlation of common mutations in NOTCH1 and SF3B1 as the poor prognostic markers with chromosomal abnormalities and clinical hematology. METHOD This retrospective study was performed on the peripheral blood of 51 patients diagnosed before chemotherapy with CLL. G-banding karyotype and FISH were performed. For NOTCH1, exon 34 and for SF3B1, exons 14,15,16 were assessed using Sanger sequencing. RESULTS The mutation frequency of NOTCH1 and SF3B1 with the pathogenic clinical status was 6:51 (11.76%), and variants obtained from both genes were 9:51 (17.64%). The frequency of SF3B1 mutation (K666E) was higher than in previous studies (p-value <.05). There was a significant correlation between NOTCH1 mutations and del17p13 (p-value = .068), also SF3B1 mutations with del11q22 (p-value = .095) and del13q14 (p-value = .066). Up to 90% of the specific stimuli used for the G-banding karyotype successfully identified the malignant clone. There was a significant relationship between the cluster of differentiation 38 (CD38) expression level and NOTCH1 mutations (p-value = .019) and a significant correlation between Binet classification and the SF3B1 (p-value = .096). CONCLUSION The correlation of NOTCH1 and SF3B1 mutations with chromosomal abnormalities and CD38 expression may reveal the overall patient's survival rate. The mutations may be effective in the clonal expansion and progression of CLL, particularly in the diagnosis stage, as well as the control and management of the treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Prognosis
- Tumor Suppressor Protein p53/genetics
- Phosphoproteins/genetics
- Phosphoproteins/therapeutic use
- Retrospective Studies
- RNA Splicing Factors/genetics
- Mutation
- Chromosome Aberrations
- Receptor, Notch1/genetics
- Receptor, Notch1/therapeutic use
Collapse
Affiliation(s)
- Reza Sadria
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Payvand Clinical and Specialty Laboratory, Tehran, Iran
| | - Nasrin Motamed
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Saberi Anvar
- Department of Medical Genetics, Payvand Clinical and Specialty Laboratory, Tehran, Iran
| | - Hassan Mehrabani Yeganeh
- Department of Animal Sciences, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Behzad Poopak
- Department of Medical Genetics, Payvand Clinical and Specialty Laboratory, Tehran, Iran
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Cavallari M, Cavazzini F, Bardi A, Volta E, Melandri A, Tammiso E, Saccenti E, Lista E, Quaglia FM, Urso A, Laudisi M, Menotti E, Formigaro L, Dabusti M, Ciccone M, Tomasi P, Negrini M, Cuneo A, Rigolin GM. Biological significance and prognostic/predictive impact of complex karyotype in chronic lymphocytic leukemia. Oncotarget 2018; 9:34398-34412. [PMID: 30344950 PMCID: PMC6188145 DOI: 10.18632/oncotarget.26146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022] Open
Abstract
The complex karyotype (CK) is an established negative prognostic marker in a number of haematological malignancies. After the introduction of effective mitogens, a growing body of evidence has suggested that the presence of 3 or more aberrations by conventional banding analysis (CBA) is associated with an unfavorable outcome in chronic lymphocytic leukemia (CLL). Thus, the importance of CBA was recognized by the 2018 guidelines of the International Workshop on CLL, which proposed the introduction of CBA in clinical trials to validate the value of karyotype aberrations. Indeed, a number of observational studies showed that cytogenetic aberrations and, particularly, the CK may have a negative independent impact on objective outcome measures (i.e. time to first treatment, progression free survival, time to chemorefractoriness and overall survival) both in patients treated with chemoimmunotherapy and, possibly, in patients receiving novel mechanism-based treatment. Here, we set out to present the scientific evidence supporting the significance of CK as a prognostic marker in CLL and to discuss the biological basis showing that the CK is a consequence of genomic instability.
Collapse
Affiliation(s)
- Maurizio Cavallari
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Francesco Cavazzini
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonella Bardi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Eleonora Volta
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Aurora Melandri
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elisa Tammiso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Enrico Lista
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Maria Quaglia
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonio Urso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Michele Laudisi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elisa Menotti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Luca Formigaro
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Melissa Dabusti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Maria Ciccone
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Paolo Tomasi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Gian Matteo Rigolin
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Rigolin GM, Formigaro L, Cavallari M, Quaglia FM, Lista E, Urso A, Guardalben E, Martinelli S, Saccenti E, Bassi C, Lupini L, Bardi MA, Volta E, Tammiso E, Melandri A, Negrini M, Cavazzini F, Cuneo A. An extensive molecular cytogenetic characterization in high-risk chronic lymphocytic leukemia identifies karyotype aberrations and TP53 disruption as predictors of outcome and chemorefractoriness. Oncotarget 2018; 8:28008-28020. [PMID: 28427204 PMCID: PMC5438626 DOI: 10.18632/oncotarget.15883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
We investigated whether karyotype analysis and mutational screening by next generation sequencing could predict outcome in 101 newly diagnosed chronic lymphocytic leukemia patients with high-risk features, as defined by the presence of unmutated IGHV gene and/or 11q22/17p13 deletion by FISH and/or TP53 mutations. Cytogenetic analysis showed favorable findings (normal karyotype and isolated 13q14 deletion) in 30 patients, unfavorable (complex karyotype and/or 17p13/11q22 deletion) in 34 cases and intermediate (all other abnormalities) in 36 cases. A complex karyotype was present in 21 patients. Mutations were detected in 56 cases and were associated with unmutated IGHV status (p = 0.040) and complex karyotype (p = 0.047). TP53 disruption (i.e. TP53 mutations and/or 17p13 deletion by FISH) correlated with the presence of ≥ 2 mutations (p = 0.001) and a complex karyotype (p = 0.012). By multivariate analysis, an advanced Binet stage (p < 0.001) and an unfavorable karyotype (p = 0.001) predicted a shorter time to first treatment. TP53 disruption (p = 0.019) and the unfavorable karyotype (p = 0.028) predicted a worse overall survival. A shorter time to chemorefractoriness was associated with TP53 disruption (p = 0.001) and unfavorable karyotype (p = 0.025). Patients with both unfavorable karyotype and TP53 disruption presented a dismal outcome (median overall survival and time to chemorefractoriness of 28.7 and 15.0 months, respectively). In conclusion, karyotype analysis refines risk stratification in high-risk CLL patients and could identify a subset of patients with highly unfavorable outcome requiring alternative treatments.
Collapse
Affiliation(s)
- Gian Matteo Rigolin
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Luca Formigaro
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Maurizio Cavallari
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Maria Quaglia
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Enrico Lista
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonio Urso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Emanuele Guardalben
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Sara Martinelli
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria Antonella Bardi
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Eleonora Volta
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Elisa Tammiso
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Aurora Melandri
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Francesco Cavazzini
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations. J Hematol Oncol 2016; 9:88. [PMID: 27633522 PMCID: PMC5025606 DOI: 10.1186/s13045-016-0320-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background In chronic lymphocytic leukemia (CLL), next-generation sequencing (NGS) analysis represents a sensitive, reproducible, and resource-efficient technique for routine screening of gene mutations. Methods We performed an extensive biologic characterization of newly diagnosed CLL, including NGS analysis of 20 genes frequently mutated in CLL and karyotype analysis to assess whether NGS and karyotype results could be of clinical relevance in the refinement of prognosis and assessment of risk of progression. The genomic DNA from peripheral blood samples of 200 consecutive CLL patients was analyzed using Ion Torrent Personal Genome Machine, a NGS platform that uses semiconductor sequencing technology. Karyotype analysis was performed using efficient mitogens. Results Mutations were detected in 42.0 % of cases with 42.8 % of mutated patients presenting 2 or more mutations. The presence of mutations by NGS was associated with unmutated IGHV gene (p = 0.009), CD38 positivity (p = 0.010), risk stratification by fluorescence in situ hybridization (FISH) (p < 0.001), and the complex karyotype (p = 0.003). A high risk as assessed by FISH analysis was associated with mutations affecting TP53 (p = 0.012), BIRC3 (p = 0.003), and FBXW7 (p = 0.003) while the complex karyotype was significantly associated with TP53, ATM, and MYD88 mutations (p = 0.003, 0.018, and 0.001, respectively). By multivariate analysis, the multi-hit profile (≥2 mutations by NGS) was independently associated with a shorter time to first treatment (p = 0.004) along with TP53 disruption (p = 0.040), IGHV unmutated status (p < 0.001), and advanced stage (p < 0.001). Advanced stage (p = 0.010), TP53 disruption (p < 0.001), IGHV unmutated status (p = 0.020), and the complex karyotype (p = 0.007) were independently associated with a shorter overall survival. Conclusions At diagnosis, an extensive biologic characterization including NGS and karyotype analyses using novel mitogens may offer new perspectives for a better refinement of risk stratification that could be of help in the clinical management of CLL patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0320-z) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Nardi V, Pulluqi O, Abramson JS, Dal Cin P, Hasserjian RP. Routine conventional karyotyping of lymphoma staging bone marrow samples does not contribute clinically relevant information. Am J Hematol 2015; 90:529-33. [PMID: 25776302 DOI: 10.1002/ajh.24008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Bone marrow (BM) evaluation is an important part of lymphoma staging, which guides patient management. Although positive staging marrow is defined as morphologically identifiable disease, such samples often also include flow cytometric analysis and conventional karyotyping. Cytogenetic analysis is a labor-intensive and costly procedure and its utility in this setting is uncertain. We retrospectively reviewed pathological reports of 526 staging marrow specimens in which conventional karyotyping had been performed. All samples originated from a single institution from patients with previously untreated Hodgkin and non-Hodgkin lymphomas presenting in an extramedullary site. Cytogenetic analysis revealed clonal abnormalities in only eight marrow samples (1.5%), all of which were positive for lymphoma by morphologic evaluation. Flow cytometry showed a small clonal lymphoid population in three of the 443 morphologically negative marrow samples (0.7%). Conventional karyotyping is rarely positive in lymphoma staging marrow samples and, in our cohort, the BM karyotype did not contribute clinically relevant information in the vast majority of cases. Our findings suggest that karyotyping should not be performed routinely on BM samples taken to stage previously diagnosed extramedullary lymphomas unless there is pathological evidence of BM involvement by lymphoma.
Collapse
Affiliation(s)
- Valentina Nardi
- Department of Pathology; Massachusetts General Hospital; Boston Massachusetts
- Harvard Medical School; Boston Massachusetts
| | - Olja Pulluqi
- Department of Pathology; Brigham and Women's Hospital; Boston Massachusetts
| | - Jeremy S. Abramson
- Harvard Medical School; Boston Massachusetts
- Center for Lymphoma; Massachusetts General Hospital Cancer Center; Boston Massachusetts
| | - Paola Dal Cin
- Harvard Medical School; Boston Massachusetts
- Department of Pathology; Brigham and Women's Hospital; Boston Massachusetts
| | - Robert P. Hasserjian
- Department of Pathology; Massachusetts General Hospital; Boston Massachusetts
- Harvard Medical School; Boston Massachusetts
| |
Collapse
|
6
|
Foà R, Del Giudice I, Cuneo A, Del Poeta G, Ciolli S, Di Raimondo F, Lauria F, Cencini E, Rigolin GM, Cortelezzi A, Nobile F, Callea V, Brugiatelli M, Massaia M, Molica S, Trentin L, Rizzi R, Specchia G, Di Serio F, Orsucci L, Ambrosetti A, Montillo M, Zinzani PL, Ferrara F, Morabito F, Mura MA, Soriani S, Peragine N, Tavolaro S, Bonina S, Marinelli M, De Propris MS, Starza ID, Piciocchi A, Alietti A, Runggaldier EJ, Gamba E, Mauro FR, Chiaretti S, Guarini A. Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients. Am J Hematol 2014; 89:480-6. [PMID: 24415640 DOI: 10.1002/ajh.23668] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022]
Abstract
In a phase II trial, we evaluated chlorambucil and rituximab (CLB-R) as first-line induction treatment with or without R as maintenance for elderly chronic lymphocytic leukemia (CLL) patients. Treatment consisted of eight 28-day cycles of CLB (8 mg/m(2) /day, days 1-7) and R (day 1 of cycle 3, 375 mg/m(2) ; cycles 4-8, 500 mg/m(2) ). Responders were randomized to 12 8-week doses of R (375 mg/m(2) ) or observation. As per intention-to-treat analysis, 82.4% (95% CI, 74.25-90.46%) of 85 patients achieved an overall response (OR), 16.5% a complete response (CR), 2.4% a CR with incomplete bone marrow recovery. The OR was similar across Binet stages (A 86.4%, B 81.6%, and C 78.6%) and age categories (60-64 years, 92.3%; 65-69, 85.2%; 70-74, 75.0%; ≥75, 81.0%). CLB-R was well tolerated. After a median follow-up of 34.2 months, the median progression-free survival (PFS) was 34.7 months (95% CI, 33.1-39.5). TP53 abnormalities, complex karyotype, and low CD20 gene expression predicted lack of response; SF3B1 mutation and BIRC3 disruption low CR rates. IGHV mutations significantly predicted PFS. R maintenance tended towards a better PFS than observation and was safe and most beneficial for patients in partial response and for unmutated IGHV cases. CLB-R represents a promising option for elderly CLL patients.
Collapse
Affiliation(s)
- Robin Foà
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | - Ilaria Del Giudice
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | - Antonio Cuneo
- University of Ferrara, Arcispedale Sant'Anna; Ferrara Italy
| | - Giovanni Del Poeta
- Division of Hematology; S. Eugenio Hospital and University of Tor Vergata; Rome Italy
| | - Stefania Ciolli
- Division of Hematology; University of Florence; Florence Italy
| | | | | | | | | | | | - Francesco Nobile
- Hematology Unit, Azienda Ospedaliera Bianchi Melacrino Morelli; Reggio Calabria Italy
| | - Vincenzo Callea
- Hematology Unit, Azienda Ospedaliera Bianchi Melacrino Morelli; Reggio Calabria Italy
| | | | | | - Stefano Molica
- Oncologia Medica, Azienda Ospedaliera Pugliese Ciaccio; Catanzaro Italy
| | - Livio Trentin
- Dipartimento Medicina e Clinica Sperimentale; University of Padua; Padua Italy
| | - Rita Rizzi
- Hematology; University of Bari; Bari Italy
| | | | - Francesca Di Serio
- Clinical Pathology Unit; Azienda Ospedaliero-Universitaria Consorziale Policlinico; Bari Italy
| | - Lorella Orsucci
- Oncology-Section of Hematology; San Giovanni Battista Hospital; Turin Italy
| | - Achille Ambrosetti
- Hematology Section; Department of Medicine; University of Verona; Verona Italy
| | - Marco Montillo
- Division of Hematology; Niguarda Ca' Granda Hospital; Milan Italy
| | - Pier Luigi Zinzani
- Institute of Hematology and Medical Oncology, “L. e A. Seràgnoli”, University of Bologna; Bologna Italy
| | - Felicetto Ferrara
- Cardarelli Hospital, Hematology and Stem Cell Transplantation Unit; Naples Italy
| | | | | | - Silvia Soriani
- Laboratory of Cytogenetic; Ospedale Niguarda; Milan Italy
| | - Nadia Peragine
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | - Simona Tavolaro
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | - Silvia Bonina
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | - Marilisa Marinelli
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | | | - Irene Della Starza
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | | | | | | | | | | | - Sabina Chiaretti
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| | - Anna Guarini
- Department of Cellular Biotechnologies and Hematology; Sapienza University; Rome Italy
| |
Collapse
|
7
|
Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with "normal" FISH: correlations with clinicobiologic parameters. Blood 2012; 119:2310-3. [PMID: 22246039 DOI: 10.1182/blood-2011-11-395269] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is unclear whether karyotype aberrations that occur in regions uncovered by the standard fluorescence in situ hybridization (FISH) panel have prognostic relevance in chronic lymphocytic leukemia (CLL). We evaluated the significance of karyotypic aberrations in a learning cohort (LC; n = 64) and a validation cohort (VC; n = 84) of patients with chronic lymphocytic leukemia with "normal" FISH. An abnormal karyotype was found in 21.5% and 35.7% of cases in the LC and VC, respectively, and was associated with a lower immunophenotypic score (P = .030 in the LC, P = .035 in the VC), advanced stage (P = .040 in the VC), and need for treatment (P = .002 in the LC, P = < .0001 in the VC). The abnormal karyotype correlated with shorter time to first treatment and shorter survival in both the LC and the VC, representing the strongest prognostic parameter. In patients with chronic lymphocytic leukemia with normal FISH, karyotypic aberrations by conventional cytogenetics with novel mitogens identify a subset of cases with adverse prognostic features.
Collapse
|