1
|
Guo M, Zhang J, Han J, Hu Y, Ni H, Yuan J, Sun Y, Liu M, Gao L, Liao W, Ma C, Liu Y, Li S, Li N. VEGFR2 blockade inhibits glioblastoma cell proliferation by enhancing mitochondrial biogenesis. J Transl Med 2024; 22:419. [PMID: 38702818 PMCID: PMC11067099 DOI: 10.1186/s12967-024-05155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Junhao Zhang
- Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Han
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingyue Hu
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hao Ni
- Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Juan Yuan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yang Sun
- Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China
| | - Meijuan Liu
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lifen Gao
- Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhong Ma
- Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Nailin Li
- Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden.
| |
Collapse
|
2
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
3
|
Impact of Blood Vessel Quantity and Vascular Expression of CD133 and ICAM-1 on Survival of Glioblastoma Patients. NEUROSCIENCE JOURNAL 2017; 2017:5629563. [PMID: 29250531 PMCID: PMC5698821 DOI: 10.1155/2017/5629563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/07/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GB) is the most angiogenic tumor. Nevertheless, antiangiogenic therapy has not shown significant clinical efficacy. The aim of this study was to assess blood vessel characteristics on survival of GB patients. Surgically excised GB tissues were histologically examined for overall proportion of glomeruloid microvascular proliferation (MP) and the total number of blood vessels. Also, immunohistochemical vascular staining intensities of CD133 and ICAM-1 were determined. Vessel parameters were correlated with patients' overall survival. The survival time depended on the number of blood vessels (p = 0.03) but not on the proportion of MP. Median survival times for patients with low (<median) and high (≥median) number of blood vessels were 9.0 months (95% CI: 7.5–10.5) and 12.0 months (95% CI: 9.3–14.7). Also, median survival times for patients with low (<median) and high (≥median) vascular expression level of CD133 were 9.0 months (95% CI: 8.0–10.1) and 12.0 months (95% CI: 10.3–13.7). In contrast, the staining intensity of vascular ICAM-1 did not affect survival. In multivariate analysis, the number of blood vessels emerged as an independent predictor for longer overall survival (HR: 2.4, 95% CI: 1.2–5.0, p = 0.02). For success in antiangiogenic therapy, better understanding about tumor vasculature biology is needed.
Collapse
|
4
|
VEGFR-2 Expression in Glioblastoma Multiforme Depends on Inflammatory Tumor Microenvironment. Int J Inflam 2015; 2015:385030. [PMID: 26798546 PMCID: PMC4700182 DOI: 10.1155/2015/385030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most angiogenic tumors. However, antiangiogenic therapy has not shown significant clinical efficacy. The aim of our study was to evaluate the impact of inflammatory tumor microenvironment on the expression of vascular endothelial growth factor receptor 2 (VEGFR-2). Surgically excised primary GBM tissues were histologically examined for overall extent of inflammation (score 1-3). After immunohistochemistry, the tissue expression of ICAM-1 (optical density), the number of VEGFR-2 positive (VEGFR-2+) blood vessels (per microscopic field), and the endothelial staining intensity of VEGFR-2 (score 0-3) were determined. In GBM, the extent of inflammation was 1.9 ± 0.7 (group mean ± SD). Mean optical density of inflammatory mediator ICAM-1 was 57.0 ± 27.1 (pixel values). The number of VEGFR-2+ blood vessels and endothelial VEGFR-2 staining intensity were 6.2 ± 2.4 and 1.2 ± 0.8, respectively. A positive association was found between endothelial VEGFR-2 staining intensity and the extent of inflammation (p = 0.005). Moreover, VEGFR-2 staining intensity correlated with the expression level of ICAM-1 (p = 0.026). The expression of VEGFR-2, one of the main targets of antiangiogenic therapy, depends on GBM microenvironment. Higher endothelial VEGFR-2 levels were seen in the presence of more pronounced inflammation. Target dependence on inflammatory tumor microenvironment has to be taken into consideration when treatment approaches that block VEGFR-2 signaling are designed.
Collapse
|
5
|
Watkins S, Sontheimer H. Unique biology of gliomas: challenges and opportunities. Trends Neurosci 2012; 35:546-56. [PMID: 22683220 DOI: 10.1016/j.tins.2012.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023]
Abstract
Gliomas are terrifying primary brain tumors for which patient outlook remains bleak. Recent research provides novel insights into the unique biology of gliomas. For example, these tumors exhibit an unexpected pluripotency that enables them to grow their own vasculature. They have an unusual ability to navigate tortuous extracellular pathways as they invade, and they use neurotransmitters to inflict damage and create room for growth. Here, we review studies that illustrate the importance of considering interactions of gliomas with their native brain environment. Such studies suggest that gliomas constitute a neurodegenerative disease caused by the malignant growth of brain support cells. The chosen examples illustrate how targeted research into the biology of gliomas is yielding new and much needed therapeutic approaches to this challenging nervous system disease.
Collapse
Affiliation(s)
- Stacey Watkins
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|