1
|
Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D. Iron Regulation in Clostridioides difficile. Front Microbiol 2018; 9:3183. [PMID: 30619231 PMCID: PMC6311696 DOI: 10.3389/fmicb.2018.03183] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
Collapse
Affiliation(s)
- Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Lassek
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Katharina Riedel
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Otto
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Abstract
The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family.
Collapse
|