1
|
Xu P, Wu T, Ali A, Wang J, Fang Y, Qiang R, Liu Y, Tian Y, Liu S, Zhang H, Liao Y, Chen X, Shoaib F, Sun C, Xu Z, Xia D, Zhou H, Wu X. Rice β-Glucosidase 4 (Os1βGlu4) Regulates the Hull Pigmentation via Accumulation of Salicylic Acid. Int J Mol Sci 2022; 23:10646. [PMID: 36142555 PMCID: PMC9504040 DOI: 10.3390/ijms231810646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Salicylic acid (SA) is a stress hormone synthesized in phenylalanine ammonia-lyase (PAL) and the branching acid pathway. SA has two interconvertible forms in plants: SAG (SA O-β-glucoside) and SA (free form). The molecular mechanism of conversion of SA to SAG had been reported previously. However, which genes regulate SAG to SA remained unknown. Here, we report a cytoplasmic β-glucosidase (β-Glu) which participates in the SA pathway and is involved in the brown hull pigmentation in rice grain. In the current study, an EMS-generated mutant brown hull 1 (bh1) displayed decreased contents of SA in hulls, a lower photosynthesis rate, and high-temperature sensitivity compared to the wild type (WT). A plaque-like phenotype (brown pigmentation) was present on the hulls of bh1, which causes a significant decrease in the seed setting rate. Genetic analysis revealed a mutation in LOC_Os01g67220, which encodes a cytoplasmic Os1βGlu4. The knock-out lines displayed the phenotype of brown pigmentation on hulls and decreased seed setting rate comparable with bh1. Overexpression and complementation lines of Os1βGlu4 restored the phenotype of hulls and normal seed setting rate comparable with WT. Subcellular localization revealed that the protein of Os1βGlu4 was localized in the cytoplasm. In contrast to WT, bh1 could not hydrolyze SAG into SA in vivo. Together, our results revealed the novel role of Os1βGlu4 in the accumulation of flavonoids in hulls by regulating the level of free SA in the cellular pool.
Collapse
Affiliation(s)
- Peizhou Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingkai Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinhao Wang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongqiong Fang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runrun Qiang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Yutong Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Tian
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Su Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongyu Zhang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxiang Liao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiong Chen
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Farwa Shoaib
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Changhui Sun
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Duo Xia
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhou
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianjun Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Chen Y, Chen X, Lin J, Zhuang Y, Han Z, Chen J. Electrochemical Detection of Alpha-Fetoprotein Based on Black Phosphorus Nanosheets Modification with Iron Ions. MICROMACHINES 2022; 13:673. [PMID: 35630141 PMCID: PMC9146063 DOI: 10.3390/mi13050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022]
Abstract
Black phosphorus nanosheets (BPNSs) were synthesized with liquid exfoliation combined with the ultrasonic method and loaded with Fe3+ by simply mixing. The morphology, structure and electrochemical properties of the synthesized Fe3+/BPNSs were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV), etc. The load of Fe3+ can improve the electrochemical performance of BPNSs and enhance the sensitivity of the detection. Additionally, Fe3+/BPNSs display good biocompatibility. In this study, immunosensors based on Fe3+/BPNSs were constructed to detect alpha-fetoprotein (AFP). The detection is due to the specific binding between the AFP antigen and antibody on the surface of the immunosensors, which can reduce the current response of Fe3+/BPNSs. The immunosensors have a good linear relationship in the range of 0.005 ng·mL-1 to 50 ng·mL-1, and the detection limit is 1.2 pg·mL-1. The results show that surface modification with metal ions is a simple and effective way to improve the electrochemical properties of BPNSs, which will broaden the prospects for the future application of BPNSs in the electrochemical field.
Collapse
Affiliation(s)
- Yiyan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
| | - Xiaoping Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Jianwei Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Yafeng Zhuang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Zhizhong Han
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| | - Jinghua Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (Y.C.); (X.C.); (J.L.); (Y.Z.); (J.C.)
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, China
| |
Collapse
|
3
|
Idris AO, Mabuba N, Arotiba OA. Towards cancer diagnostics – an α-feto protein electrochemical immunosensor on a manganese(iv) oxide/gold nanocomposite immobilisation layer. RSC Adv 2018; 8:30683-30691. [PMID: 35548739 PMCID: PMC9085503 DOI: 10.1039/c8ra06135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 11/25/2022] Open
Abstract
A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented. The MnO2NRs was synthesised using a hydrothermal method and AuNPs were electrodeposited on a glassy carbon electrode surface. The MnO2NRs were characterised with scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterise the immunosensor at each stage of the biosensor preparation. The MnO2 nanorods and AuNPs were applied as the immobilisation layer to efficiently capture the antibodies and amplify the electrochemical signal. Under optimised conditions, the fabricated immunosensor was utilised for the quantification of AFP with a wide dynamic range of 0.005 to 500 ng mL−1 and detection limits of 0.00276 ng mL−1 and 0.00172 ng mL−1 (S/N = 3) were obtained from square wave anodic stripping voltammetry and EIS respectively. The nanocomposite modifier enhanced the immunosensor performance. More so, this label-free immunosensor possesses good stability over a period of two weeks when stored at 4 °C and was selective in the presence of some interfering species. A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented.![]()
Collapse
Affiliation(s)
- Azeez O. Idris
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
| | - Nonhlangabezo Mabuba
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
- Centre for Nanomaterials Science Research
- University of Johannesburg
| | - Omotayo A. Arotiba
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
- Centre for Nanomaterials Science Research
- University of Johannesburg
| |
Collapse
|