1
|
Wu Q, Li Z, Yang J, Xu F, Fu X, Xu L, You C, Wang D, Su Y, Que Y. Deciphering the Atlas of Post-Translational Modification in Sugarcane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37339007 DOI: 10.1021/acs.jafc.3c01886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
In plants, lysine acetylation (Kac), 2-hydroxyisobutyrylation (Khib), and lysine lactylation (Kla), the three new types of post-translational modification (PTM), play very important roles in growth, development, and resistance to adverse environmental stresses. Herein, we report the first global acetylome, 2-hydroxyisobutyrylome, and lactylome in sugarcane. A total of 8573 Kac, 4637 Khib, and 215 Kla sites across 3903, 1507, and 139 modified proteins were identified. Besides, homology analyses revealed the Kac, Khib, and Kla sites on histones were conserved between sugarcane and rice or poplar. Functional annotations demonstrated that the Kac, Khib, and Kla proteins were mainly involved in energy metabolism. In addition, a number of modified transcription factors and stress-related proteins, which were constitutively expressed in different tissues of sugarcane and induced by drought, cold or Sporisorium scitamineum stress, were identified. Finally, a proposed working mode on how PTM functions in sugarcane was depicted. We thus concluded that PTM should play a role in sugarcane growth, development, and response to biotic and abiotic stresses, but the mechanisms require further investigation. The present study provided the all-new comprehensive profile of proteins Kac, Khib, and Kla and a new perspective to understand the molecular mechanisms of protein PTMs in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueqin Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Kaiyuan, Yunnan 661699, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
2
|
Li AM, Liao F, Wang M, Chen ZL, Qin CX, Huang RQ, Verma KK, Li YR, Que YX, Pan YQ, Huang DL. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors. Int J Mol Sci 2023; 24:ijms24108913. [PMID: 37240257 DOI: 10.3390/ijms24108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ruo-Qi Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Xiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
3
|
Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell CA, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). PHOTOSYNTHESIS RESEARCH 2021; 150:279-294. [PMID: 31900791 DOI: 10.1007/s11120-019-00706-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane mosaic virus (SCMV), belonging to genus Potyvirus, family Potyviridae, is a severe pathogen of several agricultural important crops, mainly sugarcane. Due to complex nature of sugarcane, the effect of SCMV pathogenicity on sugarcane photosynthetic systems remains to be explored. In this study, we investigated the alterations occurring in the photosynthetic system in the sugarcane genotypes at the cytopathological, physiological and biological, transcriptome and proteome level. We generated the transcriptome assembly of two genotypes (susceptible Badila and resistant B-48) using Saccharum spontaneum L. as a reference genome. RNA-sequencing data revealed the significant upregulation of NAD(P)H, RubisCO, oxygen-evolving complex, chlorophyll a and b binding protein, Psb protein family, PSI reaction center subunit II, and IVgenes in B-48, as compared to its counterparts. Upregulated genes in B-48 are associated with various processes such as stability and assembly of photosystem, protection against photoinhibition and antiviral defense. The expression pattern of differentially abundant genes were further verified at the proteomics level. Overall, differentially expressed genes/proteins (DEGs/DEPs) showed the consistency of expression at both transcriptome and proteome level in B-48 genotype. Comprehensively, these data supported the efficiency of B-48 genotype under virus infection conditions and provided a better understanding of the expression pattern of photosynthesis-related genes in sugarcane.
Collapse
Affiliation(s)
- Sehrish Akbar
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Lifang Qin
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Miaohong Ruan
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China.
- IRREC-IFAS, University of Florida, Fort Pierce, FL, 34945, USA.
| |
Collapse
|
4
|
Shabbir R, Javed T, Afzal I, Sabagh AE, Ali A, Vicente O, Chen P. Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. AGRONOMY 2021; 11:1042. [DOI: 10.3390/agronomy11061042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sugarcane (Saccharum spp.) is one of the most important industrial cash crops, contributing to the world sugar industry and biofuel production. It has been cultivated and improved from prehistoric times through natural selection and conventional breeding and, more recently, using the modern tools of genetic engineering and biotechnology. However, the heterogenicity, complex poly-aneuploid genome and susceptibility of sugarcane to different biotic and abiotic stresses represent impediments that require us to pay greater attention to the improvement of the sugarcane crop. Compared to traditional breeding, recent advances in breeding technologies (molecular marker-assisted breeding, sugarcane transformation, genome-editing and multiple omics technologies) can potentially improve sugarcane, especially against environmental stressors. This article will focus on efficient modern breeding technologies, which provide crucial clues for the engineering of sugarcane cultivars resistant to environmental stresses.
Collapse
|
5
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Ali A, Khan M, Sharif R, Mujtaba M, Gao SJ. Sugarcane Omics: An Update on the Current Status of Research and Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E344. [PMID: 31547331 PMCID: PMC6784093 DOI: 10.3390/plants8090344] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Sugarcane is an important crop from Poaceae family, contributing about 80% of the total world's sucrose with an annual value of around US$150 billion. In addition, sugarcane is utilized as a raw material for the production of bioethanol, which is an alternate source of renewable energy. Moving towards sugarcane omics, a remarkable success has been achieved in gene transfer from a wide variety of plant and non-plant sources to sugarcane, with the accessibility of efficient transformation systems, selectable marker genes, and genetic engineering gears. Genetic engineering techniques make possible to clone and characterize useful genes and also to improve commercially important traits in elite sugarcane clones that subsequently lead to the development of an ideal cultivar. Sugarcane is a complex polyploidy crop, and hence no single technique has been found to be the best for the confirmation of polygenic and phenotypic characteristics. To better understand the application of basic omics in sugarcane regarding agronomic characters and industrial quality traits as well as responses to diverse biotic and abiotic stresses, it is important to explore the physiology, genome structure, functional integrity, and collinearity of sugarcane with other more or less similar crops/plants. Genetic improvements in this crop are hampered by its complex genome, low fertility ratio, longer production cycle, and susceptibility to several biotic and abiotic stresses. Biotechnology interventions are expected to pave the way for addressing these obstacles and improving sugarcane crop. Thus, this review article highlights up to date information with respect to how advanced data of omics (genomics, transcriptomic, proteomics and metabolomics) can be employed to improve sugarcane crops.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mehran Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Punjab 32200, Pakistan
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Proteomic Analysis of the Resistance Mechanisms in Sugarcane during Sporisorium scitamineum Infection. Int J Mol Sci 2019; 20:ijms20030569. [PMID: 30699953 PMCID: PMC6387155 DOI: 10.3390/ijms20030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 01/10/2023] Open
Abstract
Smut disease is caused by Sporisorium scitamineum, an important sugarcane fungal pathogen causing an extensive loss in yield and sugar quality. The available literature suggests that there are two types of smut resistance mechanisms: external resistance by physical or chemical barriers and intrinsic internal resistance mechanisms operating at host–pathogen interaction at cellular and molecular levels. The nature of smut resistance mechanisms, however, remains largely unknown. The present study investigated the changes in proteome occurring in two sugarcane varieties with contrasting susceptibility to smut—F134 and NCo310—at whip development stage after S. scitamineum infection. Total proteins from pathogen inoculated and uninoculated (control) leaves were separated by two-dimensional gel electrophoresis (2D-PAGE). Protein identification was performed using BLASTp and tBLASTn against NCBI nonredundant protein databases and EST databases, respectively. A total of thirty proteins spots representing differentially expressed proteins (DEPs), 16 from F134 and 14 from NCo310, were identified and analyzed by MALDI-TOF/TOF MS. In F134, 4 DEPs were upregulated and nine were downregulated, while, nine were upregulated and three were downregulated in NCo310. The DEPs were associated with DNA binding, metabolic processes, defense, stress response, photorespiration, protein refolding, chloroplast, nucleus and plasma membrane. Finally, the expression of CAT, SOD, and PAL with recognized roles in S. scitamineum infection in both sugarcane verities were analyzed by real-time quantitative PCR (RT-qPCR) technique. Identification of genes critical for smut resistance in sugarcane will increase our knowledge of S. scitamineum-sugarcane interaction and help to develop molecular and conventional breeding strategies for variety improvement.
Collapse
|
8
|
Su Y, Xiao X, Ling H, Huang N, Liu F, Su W, Zhang Y, Xu L, Muhammad K, Que Y. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. BMC Genomics 2019; 20:57. [PMID: 30658590 PMCID: PMC6339412 DOI: 10.1186/s12864-018-5400-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sugarcane smut is a fungal disease caused by Sporisorium scitamineum. Cultivation of smut-resistant sugarcane varieties is the most effective way to control this disease. The interaction between sugarcane and S. scitamineum is a complex network system. However, to date, there is no report on the identification of microRNA (miRNA) target genes of sugarcane in response to smut pathogen infection by degradome technology. RESULTS TaqMan qRT-PCR detection and enzyme activity determination showed that S. scitamineum rapidly proliferated and incurred significant enzyme activity changes in the reactive oxygen species metabolic pathway and phenylpropanoid metabolic pathway at 2 d and 5 d after inoculation, which was the best time points to study target gene degradation during sugarcane and S. scitamineum interaction. A total of 122.33 Mb of raw data was obtained from degradome sequencing analysis of YC05-179 (smut-resistant) and ROC22 (smut-susceptible) after inoculation. The Q30 of each sample was > 93%, and the sequence used for degradation site analysis exactly matched the sugarcane reference sequence. A total of 309 target genes were predicted in sugarcane, corresponding to 97 known miRNAs and 112 novel miRNAs, and 337 degradation sites, suggesting that miRNAs can efficiently direct cleavage at multiple sites in the predicted target mRNAs. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the predicted target genes were involved in various regulatory processes, such as signal transduction mechanisms, inorganic ion transport and metabolism, defense mechanisms, translation, posttranslational modifications, energy production and conversion, and glycerolipid metabolism. qRT-PCR analysis of the expression level of 13 predicted target genes and their corresponding miRNAs revealed that there was no obvious negative regulatory relationship between miRNAs and their target genes. In addition, a number of putative resistance-related target genes regulated by miRNA-mediated cleavage were accumulated in sugarcane during S. scitamineum infection, suggesting that feedback regulation of miRNAs may be involved in the response of sugarcane to S. scitamineum infection. CONCLUSIONS This study elucidates the underlying response of sugarcane to S. scitamineum infection, and also provides a resource for miRNAs and their predicted target genes for smut resistance improvement in sugarcane.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xinhuan Xiao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuye Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, 21300 Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
9
|
Galeano Garcia P, Neves Dos Santos F, Zanotta S, Eberlin MN, Carazzone C. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules 2018; 23:E3330. [PMID: 30558273 PMCID: PMC6320815 DOI: 10.3390/molecules23123330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Tomato crops suffer attacks of various pathogens that cause large production losses. Late blight caused by Phytophthora infestans is a devastating disease in tomatoes because of its difficultly to control. Here, we applied metabolomics based on liquid chromatography⁻mass spectrometry (LC-MS) and metabolic profiling by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis in the early detection of late blight on asymptomatic tomato plants and to discriminate infection times of 4, 12, 24, 36, 48, 60, 72 and 96 h after inoculation (hpi). MALDI-MS and LC-MS profiles of metabolites combined with multivariate data analysis are able to detect early-late blight-infected tomato plants, and metabolomics based on LC-MS discriminates infection times in asymptomatic plants. We found the metabolite tomatidine as an important biomarker of infection, saponins as early infection metabolite markers and isocoumarin as early and late asymptomatic infection marker along the post infection time. MALDI-MS and LC-MS analysis can therefore be used as a rapid and effective method for the early detection of late blight-infected tomato plants, offering a suitable tool to guide the correct management and application of sanitary defense approaches. LC-MS analysis also appears to be a suitable tool for identifying major metabolites of asymptomatic late blight-infected tomato plants.
Collapse
Affiliation(s)
- Paula Galeano Garcia
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
- Bioprospección de los Productos Naturales Amazónicos, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Fábio Neves Dos Santos
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Samantha Zanotta
- Laboratório de Diagnostico Fitopatológico, Instituto Biológico, São Paulo 04014-900, Brazil.
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
| |
Collapse
|
10
|
Huang N, Ling H, Su Y, Liu F, Xu L, Su W, Wu Q, Guo J, Gao S, Que Y. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane. Gene 2018; 678:207-218. [PMID: 30099025 DOI: 10.1016/j.gene.2018.08.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sugarcane smut, which is caused by Sporisorium scitamineum, is a severe fungal disease affecting sugarcane. However, the major pathways involved in the interaction between sugarcane and S. scitamineum remains unclear. RESULTS In the present study, suppression subtractive hybridization (SSH) library construction, together with reverse northern blotting, was conducted on the most prevalent sugarcane genotype ROC22 challenged with S. scitamineum. After alignment and homologous expressed sequence tag (EST) assembly, a total of 155 differentially expressed unigenes were identified from SSH libraries. Totally, 26 of 155 differentially expressed unigenes were analyzed by qRT-PCR in sugarcane smut-resistant genotype YC05-179 and susceptible genotype ROC22. Genes encoded two unknown protein (Q1 and Q11), serine/threonine kinase (Q2), fiber protein (Q3), eukaryotic translation initiation factor 5A (Q23), and Sc14-3-3-like protein (Q24) were induced in sugarcane smut-resistant genotype YC05-179 but inhibited in susceptible genotype ROC22. Based on the differential expression data achieved from SSH libraries and qRT-PCR, we found that, serine/threonine kinases, Ca2+ sensors, mitogen-activated protein genes and some NBS-LRR genes may involve in the signal recognition and transduction of smut fungus infection in sugarcane. While in the plant hormone signaling pathways, the genes related to auxin, abscisic acid, salicylic acid and ethylene were more apparently in response to smut fungus invasion. The hypersensitive response, protein metabolism, polyamine synthesis, and cell wall formation may play an important role in sugarcane defense against smut fungus colonization. Additionally, the Sc14-3-3 might serve as a molecular modulator in sugarcane being immune to smut disease by interacting with proteins like ScGAPN (Q10), which have been further verified by BiFC assay. CONCLUSIONS The findings of the present study could provide a general view about gene pathways involving in sugarcane defense against smut disease and facilitate a better understanding of the molecular mechanism underlying sugarcane-S. scitamineum interaction.
Collapse
Affiliation(s)
- Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
11
|
Sánchez-Elordi E, Contreras R, de Armas R, Benito MC, Alarcón B, de Oliveira E, Del Mazo C, Díaz-Peña EM, Santiago R, Vicente C, Legaz ME. Differential expression of SofDIR16 and SofCAD genes in smut resistant and susceptible sugarcane cultivars in response to Sporisorium scitamineum. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:103-113. [PMID: 29753910 DOI: 10.1016/j.jplph.2018.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 05/25/2023]
Abstract
Proteomic profiling of the stalk of a smut resistant and a susceptible sugarcane cultivars revealed the presence of dirigent and dirigent-like proteins in abundance in the pool of high molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins, produced as part of the defensive response to the fungal smut pathogen. Quantitative RT-PCR analysis showed that expression levels of SofDIR16 (sugarcane dirigent16) and SofCAD (sugarcane cinnamyl alcohol dehydrogenase) were higher in the smut resistant My 55-14 cultivar than in the sensitive B 42231 cultivar prior to infection. Inoculation with fungal sporidia or water decreased the level of SofCAD transcripts in My 55-14, indicating that regulation of SofCAD expression does not take part of the specific response to smut infection. In contrast, SofDIR16 expression was almost nullified in My 55-14 after inoculation with fungal sporidia, but not after water injection. It is proposed that the decreased expression of dirigent proteins induces the formation of lignans, which are involved in the defense response of the smut resistant My 55-14 cultivar.
Collapse
Affiliation(s)
- Elena Sánchez-Elordi
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Roberto Contreras
- Department of Genetics, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | | | - Mario C Benito
- Department of Genetics, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Borja Alarcón
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Eliandre de Oliveira
- Plataforma de Proteómica, Parc Cientific de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Del Mazo
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Eva M Díaz-Peña
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Rocío Santiago
- Department of Biochemistry and Department of Geographical Sciences, Universidade Federal de Pernambuco, Recife, Brazil
| | - Carlos Vicente
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - María E Legaz
- Intercellular Communication in Plant Symbiosis Team, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. PLoS One 2018; 13:e0197840. [PMID: 29795614 PMCID: PMC5993111 DOI: 10.1371/journal.pone.0197840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Smut caused by biotrophic fungus Sporisorium scitamineum is a major disease of cultivated sugarcane that can cause considerable yield losses. It has been suggested in literature that there are at least two types of resistance mechanisms in sugarcane plants: an external resistance, due to chemical or physical barriers in the sugarcane bud, and an internal resistance governed by the interaction of plant and fungus within the plant tissue. Detailed molecular studies interrogating these two different resistance mechanisms in sugarcane are scarce. Here, we use light microscopy and global expression profiling with RNA-seq to investigate these mechanisms in sugarcane cultivar CP74-2005, a cultivar that possibly possesses both internal and external defence mechanisms. A total of 861 differentially expressed genes (DEGs) were identified in a comparison between infected and non-infected buds at 48 hours post-inoculation (hpi), with 457 (53%) genes successfully annotated using BLAST2GO software. This includes genes involved in the phenylpropanoid pathway, cell wall biosynthesis, plant hormone signal transduction and disease resistance genes. Finally, the expression of 13 DEGs with putative roles in S. scitamineum resistance were confirmed by quantitative real-time reverse transcription PCR (qRT-PCR) analysis, and the results were consistent with the RNA-seq data. These results highlight that the early sugarcane response to S. scitamineum infection is complex and many of the disease response genes are attenuated in sugarcane cultivar CP74-2005, while others, like genes involved in the phenylpropanoid pathway, are induced. This may point to the role of the different disease resistance mechanisms that operate in cultivars such as CP74-2005, whereby the early response is dominated by external mechanisms and then as the infection progresses, the internal mechanisms are switched on. Identification of genes underlying resistance in sugarcane will increase our knowledge of the sugarcane-S. scitamineum interaction and facilitate the introgression of new resistance genes into commercial sugarcane cultivars.
Collapse
|
13
|
Liu F, Sun T, Wang L, Su W, Gao S, Su Y, Xu L, Que Y. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. BMC Genomics 2017; 18:771. [PMID: 29020924 PMCID: PMC5637078 DOI: 10.1186/s12864-017-4142-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases in the sugarcane industry. Using a molecular biological technique to mine sugarcane resistance genes can provide gene resources for further genetic engineering of sugarcane disease-resistant breeding. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins, which involved in the responses to plant pathogens and abiotic stresses, are important signaling molecules of the jasmonic acid (JA) pathway. RESULTS Seven differentially expressed sugarcane JAZ genes, ScJAZ1-ScJAZ7, were mined from the transcriptome of sugarcane after inoculation with S. scitamineum. Bioinformatic analyses revealed that these seven ScJAZ genes encoded basic proteins that contain the TIFY and CCT_2 domains. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that the ScJAZ1-ScJAZ7 genes were tissue specific and differentially expressed under adverse stress. During S. scitamineum infection, the transcripts of ScJAZ4 and ScJAZ5 were both upregulated in the susceptible genotype ROC22 and the resistant genotype Yacheng05-179; ScJAZ1, ScJAZ2, ScJAZ3, and ScJAZ7 were downregulated in Yacheng05-179 and upregulated in ROC22; and the expression of ScJAZ6 did not change in ROC22, but was upregulated in Yacheng05-179. The transcripts of the seven ScJAZ genes were increased by the stimuli of salicylic acid and abscisic acid, particularly methyl jasmonate. The expression of the genes ScJAZ1-ScJAZ7 was immediately upregulated by the stressors hydrogen peroxide, sodium chloride, and copper chloride, whereas slightly induced after treatment with calcium chloride and polyethylene glycol. In addition, the expression of ScJAZ6, as well as seven tobacco immunity-associated marker genes were upregulated, and antimicrobial activity against Pseudomonas solanacearum and Fusarium solani var. coeruleum was observed during the transient overexpression of ScJAZ6 in Nicotiana benthamiana, suggesting that the ScJAZ6 gene is associated with plant immunity. CONCLUSIONS The different expression profiles of the ScJAZ1-ScJAZ7 genes during S. scitamineum infection, the positive response of ScJAZ1-ScJAZ7 to hormones and abiotic treatments, and the function analysis of the ScJAZ6 gene revealed their involvement in the defense against biotic and abiotic stresses. The findings of the present study facilitate further research on the ScJAZ gene family especially their regulatory mechanism in sugarcane.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ling Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
14
|
Su Y, Zhang Y, Huang N, Liu F, Su W, Xu L, Ahmad W, Wu Q, Guo J, Que Y. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. BMC Genomics 2017; 18:325. [PMID: 28438123 PMCID: PMC5404671 DOI: 10.1186/s12864-017-3716-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sugarcane smut caused by Sporisorium scitamineum leads to a significant reduction in cane yield and sucrose content. MicroRNAs (miRNAs) play an important role in regulating plant responses to biotic stress. The present study was the first to use two sugarcane genotypes, YA05-179 (smut-resistant) and ROC22 (smut-susceptible), to identify differentially expressed miRNAs in sugarcane challenged with S. scitamineum by using high-throughput sequencing. RESULTS The predicted target gene number corresponding to known differentially expressed miRNAs in YA05-179 was less than that in ROC22, however most of them were in common. Expression of differential miRNAs under S. scitamineum challenge was mostly downregulated, with similar trends in the two varieties. Gene ontology (GO) analysis showed that the target gene classification of known miRNAs was similar to that of the newly identified miRNAs. These were mainly associated with cellular processes and metabolic processes in the biological process category, as well as combination and catalytic activity in the molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these predicted target genes involved in a series of physiological and biochemical pathways or disease resistance-related physiological metabolism and signal transduction pathways, suggesting that the molecular interaction mechanism between sugarcane and S. scitamineum was a complex network system. These findings also showed certain predicted target genes of miR5671, miR5054, miR5783, miR5221, and miR6478 play roles in the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction. Quantitative real-time PCR (qRT-PCR) analysis showed that majority of the known miRNAs and its predicted target genes followed a negatively regulated mode. Seven out of eight predicted target genes showed identical expression after 12 h treatment and reached the highest degree of matching at 48 h, indicating that the regulatory role of miRNAs on the target genes in sugarcane was maximized at 48 h after S. scitamineum challenge. CONCLUSIONS Taken together, our findings serve as evidence for the association of miRNA expression with the molecular mechanism underlying the pathogenesis of sugarcane smut, particularly on the significance of miRNA levels in relation to the cultivation of smut-resistant sugarcane varieties.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuye Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Waqar Ahmad
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
15
|
Schaker PDC, Peters LP, Cataldi TR, Labate CA, Caldana C, Monteiro-Vitorello CB. Metabolome Dynamics of Smutted Sugarcane Reveals Mechanisms Involved in Disease Progression and Whip Emission. FRONTIERS IN PLANT SCIENCE 2017; 8:882. [PMID: 28620397 PMCID: PMC5450380 DOI: 10.3389/fpls.2017.00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 05/02/2023]
Abstract
Sugarcane smut disease, caused by the biotrophic fungus Sporisorium scitamineum, is characterized by the development of a whip-like structure from the plant meristem. The disease causes negative effects on sucrose accumulation, fiber content and juice quality. The aim of this study was to exam whether the transcriptomic changes already described during the infection of sugarcane by S. scitamineum result in changes at the metabolomic level. To address this question, an analysis was conducted during the initial stage of the interaction and through disease progression in a susceptible sugarcane genotype. GC-TOF-MS allowed the identification of 73 primary metabolites. A set of these compounds was quantitatively altered at each analyzed point as compared with healthy plants. The results revealed that energetic pathways and amino acid pools were affected throughout the interaction. Raffinose levels increased shortly after infection but decreased remarkably after whip emission. Changes related to cell wall biosynthesis were characteristic of disease progression and suggested a loosening of its structure to allow whip growth. Lignin biosynthesis related to whip formation may rely on Tyr metabolism through the overexpression of a bifunctional PTAL. The altered levels of Met residues along with overexpression of SAM synthetase and ACC synthase genes suggested a role for ethylene in whip emission. Moreover, unique secondary metabolites antifungal-related were identified using LC-ESI-MS approach, which may have potential biomarker applications. Lastly, a putative toxin was the most important fungal metabolite identified whose role during infection remains to be established.
Collapse
Affiliation(s)
- Patricia D. C. Schaker
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Leila P. Peters
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Thais R. Cataldi
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Carlos A. Labate
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
| | - Claudia B. Monteiro-Vitorello
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
- *Correspondence: Claudia B. Monteiro-Vitorello
| |
Collapse
|
16
|
Barnabas L, Ashwin NMR, Kaverinathan K, Trentin AR, Pivato M, Sundar AR, Malathi P, Viswanathan R, Rosana OB, Neethukrishna K, Carletti P, Arrigoni G, Masi A, Agrawal GK, Rakwal R. Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum. Proteomics 2016; 16:1111-22. [PMID: 26857420 DOI: 10.1002/pmic.201500245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 02/05/2023]
Abstract
Smut caused by Sporisorium scitamineum is one of the important diseases of sugarcane with global significance. Despite the intriguing nature of sugarcane, S. scitamineum interaction, several pertinent aspects remain unexplored. This study investigates the proteome level alterations occurring in the meristem of a S. scitamineum infected susceptible sugarcane cultivar at whip emergence stage. Differentially abundant proteins were identified by 2DE coupled with MALDI-TOF/TOF-MS. Comprehensively, 53 sugarcane proteins identified were related to defence, stress, metabolism, protein folding, energy, and cell division; in addition, a putative effector of S. scitamineum, chorismate mutase, was identified. Transcript expression vis-à-vis the activity of phenylalanine ammonia lyase was relatively higher in the infected meristem. Abundance of seven candidate proteins in 2D gel profiles was in correlation with its corresponding transcript expression levels as validated by qRT-PCR. Furthermore, this study has opened up new perspectives on the interaction between sugarcane and S. scitamineum.
Collapse
Affiliation(s)
- Leonard Barnabas
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - N M R Ashwin
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - K Kaverinathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - A Ramesh Sundar
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - P Malathi
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - R Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - O B Rosana
- Bioinformatics Center, ICAR-Indian Institute of Spices Research, Kozhikode, India
| | - K Neethukrishna
- Bioinformatics Center, ICAR-Indian Institute of Spices Research, Kozhikode, India
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center of Padova University, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal.,GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal.,GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal.,Tsukuba International Academy for Sport Studies (TIAS) and Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics 2016; 17:800. [PMID: 27733120 PMCID: PMC5062822 DOI: 10.1186/s12864-016-3146-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane smut, which is caused by Sporisorium scitamineum, has been threatening global sugarcane production. Breeding smut resistant sugarcane varieties has been proven to be the most effective method of controlling this particular disease. However, a lack of genome information of sugarcane has hindered the development of genome-assisted resistance breeding programs. Furthermore, the molecular basis of sugarcane response to S. scitamineum infection at the proteome level was incomplete and combining proteomic and transcriptional analysis has not yet been conducted. RESULTS We identified 273 and 341 differentially expressed proteins in sugarcane smut-resistant (Yacheng05-179) and susceptible (ROC22) genotypes at 48 h after inoculation with S. scitamineum by employing an isobaric tag for relative and absolute quantification (iTRAQ). The proteome quantitative data were then validated by multiple reaction monitoring (MRM). The integrative analysis showed that the correlations between the quantitative proteins and the corresponding genes that was obtained in our previous transcriptome study were poor, which were 0.1502 and 0.2466 in Yacheng05-179 and ROC22, respectively, thereby revealing a post-transcriptional event during Yacheng05-179-S. scitamineum incompatible interaction and ROC22-S. scitamineum compatible interaction. Most differentially expressed proteins were closely related to sugarcane smut resistance such as beta-1,3-glucanase, peroxidase, pathogenesis-related protein 1 (PR1), endo-1,4-beta-xylanase, heat shock protein, and lectin. Ethylene and gibberellic acid pathways, phenylpropanoid metabolism and PRs, such as PR1, PR2, PR5 and PR14, were more active in Yacheng05-179, which suggested of their possible roles in sugarcane smut resistance. However, calcium signaling, reactive oxygen species, nitric oxide, and abscisic acid pathways in Yacheng05-179 were repressed by S. scitamineum and might not be crucial for defense against this particular pathogen. CONCLUSIONS These results indicated complex resistance-related events in sugarcane-S. scitamineum interaction, and provided novel insights into the molecular mechanism underlying the response of sugarcane to S. scitamineum infection.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhuqing Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiong Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuting Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yun Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005 China
| |
Collapse
|
18
|
Barnabas L, Ramadass A, Amalraj RS, Palaniyandi M, Rasappa V. Sugarcane proteomics: An update on current status, challenges, and future prospects. Proteomics 2016; 15:1658-70. [PMID: 25641866 DOI: 10.1002/pmic.201400463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/27/2014] [Accepted: 01/09/2015] [Indexed: 12/23/2022]
Abstract
Sugarcane is one of the most important commercial crops cultivated worldwide for the production of crystal sugar, ethanol, and other related by-products. Unlike other comparable monocots like sorghum, maize, and rice, sugarcane genome by virtue of its polyploidy nature remains yet to be fully deciphered. Proteomics-an established complementary tool to genomics is at its infancy in sugarcane as compared to the other monocots. However, with the surge in genomics research accomplished by next-generation sequencing platforms, sugarcane proteomics has gained momentum. This review summarizes the available literature from 1970 to 2014, which ensures a comprehensive coverage on sugarcane proteomics-a topic first of its kind to be reviewed. We herewith compiled substantial contributions in different areas of sugarcane proteomics, which include abiotic and biotic stresses, cell wall, organelle, and structural proteomics. The past decade has witnessed a paradigm shift in the pace with which sugarcane proteomics is progressing, as evident by the number of research publications. In addition to extensively reviewing the progress made thus far, we intend to highlight the scope in sugarcane proteomics, with an aspiration to instigate focused research on sugarcane to harness its full potential for the human welfare.
Collapse
Affiliation(s)
- Leonard Barnabas
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Ashwin Ramadass
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Ramesh Sundar Amalraj
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Malathi Palaniyandi
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| | - Viswanathan Rasappa
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, India
| |
Collapse
|
19
|
Li Y, Ye Z, Nie Y, Zhang J, Wang GL, Wang Z. Comparative phosphoproteome analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars. J Proteomics 2015; 115:66-80. [DOI: 10.1016/j.jprot.2014.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/24/2014] [Accepted: 12/12/2014] [Indexed: 12/31/2022]
|
20
|
Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One 2014; 9:e106476. [PMID: 25171065 PMCID: PMC4149577 DOI: 10.1371/journal.pone.0106476] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum is a critical fungal disease in the sugarcane industry. However, molecular mechanistic studies of pathological response of sugarcane to S. scitamineum are scarce and preliminary. Here, transcriptome analysis of sugarcane disease induced by S. scitamineum at 24, 48 and 120 h was conducted, using an S. scitamineum-resistant and -susceptible genotype (Yacheng05-179 and “ROC”22). The reliability of Illumina data was confirmed by real-time quantitative PCR. In total, transcriptome sequencing of eight samples revealed gene annotations of 65,852 unigenes. Correlation analysis of differentially expressed genes indicated that after S. scitamineum infection, most differentially expressed genes and related metabolic pathways in both sugarcane genotypes were common, covering most biological activities. However, expression of resistance-associated genes in Yacheng05-179 (24–48 h) occurred earlier than those in “ROC”22 (48–120 h), and more transcript expressions were observed in the former, suggesting resistance specificity and early timing of these genes in non-affinity sugarcane and S. scitamineum interactions. Obtained unigenes were related to cellular components, molecular functions and biological processes. From these data, functional annotations associated with resistance were obtained, including signal transduction mechanisms, energy production and conversion, inorganic ion transport and metabolism, and defense mechanisms. Pathway enrichment analysis revealed that differentially expressed genes are involved in plant hormone signal transduction, flavonoid biosynthesis, plant-pathogen interaction, cell wall fortification pathway and other resistance-associated metabolic pathways. Disease inoculation experiments and the validation of invitro antibacterial activity of the chitinase gene ScChi show that this sugarcane chitinase gene identified through RNA-Seq analysis is relevant to plant-pathogen interactions. In conclusion, expression data here represent the most comprehensive dataset available for sugarcane smut induced by S. scitamineum and will serve as a resource for finally unraveling the molecular mechanisms of sugarcane responses to S. scitamineum.
Collapse
Affiliation(s)
- Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Xu L, Lu Y, You Q, Liu X, Grisham MP, Pan Y, Que Y. Biogeographical variation and population genetic structure of Sporisorium scitamineum in Mainland China: insights from ISSR and SP-SRAP markers. ScientificWorldJournal 2014; 2014:296020. [PMID: 24772015 PMCID: PMC3977103 DOI: 10.1155/2014/296020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/04/2014] [Indexed: 11/17/2022] Open
Abstract
A total of 100 Sporisorium scitamineum isolates were investigated by inter simple sequence repeat (ISSR) and single primer-sequence related amplified polymorphism (SP-SRAP) markers. These isolates were clearly assorted into three distinct clusters regardless of method used: either cluster analysis or by principal component analysis (PCA) of the ISSR, SP-SRAP, or ISSR + SP-SRAP data set. The total gene diversity (H t) and gene diversity between subpopulations (H s) were estimated to be 0.34 to 0.38 and 0.22 to 0.29, respectively, by analyzing separately the ISSR and SP-SRAP data sets, and to be 0.26-0.36 by analyzing ISSR + SP-SRAP data set. The gene diversity attributable to differentiation among populations (G st) was estimated to be 0.35 and 0.22, and the gene flow (Nm) was 0.94 and 1.78, respectively, when analyzing separately ISSR and SP-SRAP data set, and was 0.27 and 1.33, respectively, when analyzing ISSR + SP-SRAP data set. Our study showed that there is considerable genetic variation in the analyzed 100 isolates, and the environmental heterogeneity has played an important role for this observed high degree of variation. The genetic differentiation of sugarcane smut fungus depends to a large extent on the heterogeneity of their habitats and is the result of long-term adaptations of pathogens to their ecological environments.
Collapse
Affiliation(s)
- Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunhai Lu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolan Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Yongbao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Wu Q, Xu L, Guo J, Su Y, Que Y. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. BIOMED RESEARCH INTERNATIONAL 2013; 2013:298920. [PMID: 24288673 PMCID: PMC3830884 DOI: 10.1155/2013/298920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/20/2013] [Indexed: 11/17/2022]
Abstract
To understand the molecular basis of sugarcane-smut interaction, it is important to identify sugarcane genes that respond to the pathogen attack. High-throughput tag-sequencing (tag-seq) analysis by Solexa technology was performed on sugarcane infected with Sporisorium scitaminea, which should have massively increased the amount of data available for transcriptome profile analysis. After mapping to sugarcane EST databases in NCBI, we obtained 2015 differentially expressed genes, of which 1125 were upregulated and 890 downregulated by infection. Gene ontology (GO) analysis revealed that the differentially expressed genes involve in many cellular processes. Pathway analysis revealed that metabolic pathways and ribosome function are significantly affected, where upregulation of expression dominates over downregulation. Differential expression of three candidate genes involved in MAP kinase signaling pathway, ScBAK1 (GenBank Accession number: KC857629), ScMapkk (GenBank Accession number: KC857627), and ScGloI (GenBank Accession number: KC857628), was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Real-time quantitative PCR (qRT-PCR) analysis concluded that the expression of these genes were all up-regulated after the infection of S. scitaminea and may play a role in pathogen response in sugarcane. The present study provides insights into the molecular mechanism of sugarcane defense to S. scitaminea infection, leading to a more comprehensive understanding of sugarcane-smut interaction.
Collapse
Affiliation(s)
- Qibin Wu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinlong Guo
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yachun Su
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youxiong Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
23
|
Su Y, Wang S, Guo J, Xue B, Xu L, Que Y. A TaqMan real-time PCR assay for detection and quantification of Sporisorium scitamineum in sugarcane. ScientificWorldJournal 2013; 2013:942682. [PMID: 24228020 PMCID: PMC3819024 DOI: 10.1155/2013/942682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Sporisorium scitamineum is a fungal smut pathogen epidemic in sugarcane producing areas. Early detection and proper identification of the smut are an essential requirement in its management practice. In this study, we developed a TaqMan real-time PCR assay using specific primers (bEQ-F/bEQ-R) and a TaqMan probe (bEQ-P) which were designed based on the bE (b East mating type) gene (Genbank Accession no. U61290.1). This method was more sensitive (a detection limit of 10 ag pbE DNA and 0.8 ng sugarcane genomic DNA) than that of conventional PCR (10 fg and 100 ng, resp.). Reliability was demonstrated through the positive detection of samples collected from artificially inoculated sugarcane plantlets (FN40). This assay was capable of detecting the smut pathogen at the initial stage (12 h) of infection and suitable for inspection of sugarcane pathogen-free seed cane and seedlings. Furthermore, quantification of pathogen was verified in pathogen-challenged buds in different sugarcane genotypes, which suggested its feasibility for evaluation of smut resistance in different sugarcane genotypes. Taken together, this novel assay can be used as a diagnostic tool for sensitive, accurate, fast, and quantitative detection of the smut pathogen especially for asymptomatic seed cane or plants and evaluation of smut resistance of sugarcane genotypes.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanshan Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bantong Xue
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|