1
|
Jayarathna S, Kaphle A, Krishnan S, Cho SH. Nanoscale gold nanoparticle (GNP)-laden tumor cell model and its use for estimation of intracellular dose from GNP-induced secondary electrons. Med Phys 2024; 51:6276-6291. [PMID: 38935922 PMCID: PMC11489034 DOI: 10.1002/mp.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Gold nanoparticles (GNPs) accumulated within tumor cells have been shown to sensitize tumors to radiotherapy. From a physics point of view, the observed GNP-mediated radiosensitization is due to various downstream effects of the secondary electron (SE) production from internalized GNPs such as GNP-mediated dose enhancement. Over the years, numerous computational investigations on GNP-mediated dose enhancement/radiosensitization have been conducted. However, such investigations have relied mostly on simple cellular geometry models and/or artificial GNP distributions. Thus, it is at least desirable, if not necessary, to conduct further investigations using cellular geometry models that properly reflect realistic cell morphology as well as internalized GNP distributions at the nanoscale. PURPOSE The primary aim of this study was to develop a nanometer-resolution geometry model of a GNP-laden tumor cell for computational investigations of GNP-mediated dose enhancement/radiosensitization. The secondary aim was to demonstrate the utility of this model by quantifying GNP-induced SE tracks/dose distribution at sub-cellular levels for further validation of a nanoscopic dose point kernel (nDPK) method against full-fledged Geant4 Monte Carlo (MC) simulation. METHODS A transmission electron microscopy (TEM) image of a single cell showing cytoplasm, cellular nucleus, and internalized GNPs in the cellular endosome was segmented into sub-cellular levels based on pixel value thresholding. A corresponding material density was allocated to each pixel, and, by adding a thickness, each pixel was transformed to a geometric voxel and imported as a Geant4-acceptable input geometry file. In Geant4-Penelope MC simulation, a clinical 6 MV photon beam was applied, vertically or horizontally to the cell surface, and energy deposition to the cellular nucleus and cytoplasm, due to SEs emitted by internalized GNPs, was scored. Next, nDPK calculations were performed by generating virtual electron tracks from each GNP voxel to all nucleus and cytoplasm voxels. Subsequently, another set of Geant4 simulation was performed with both Penelope and DNA physics models under the geometry closely mimicking in vitro cell irradiation with a clinical 6 MV photon beam, allowing for derivation of nDPK specific to this geometry and further comparison between Gean4 simulation and nDPK method. RESULTS The Geant4-calculated SE tracks and associated energy depositions showed significant dependence on photon incidence angle. For perpendicular incidence, nDPK results showed good agreement (average percentage pixel-to-pixel difference of 0.4% for cytoplasm and 0.5% for nucleus) with Geant4 results, while, for parallel incidence, the agreement became worse (-1.7%-0.7% for cytoplasm and -5.5%-0.8% for nucleus). Under the 6 MV cell irradiation geometry, nDPK results showed reasonable agreement (pixel-to-pixel Pearson's product moment correlation coefficient of 0.91 for cytoplasm and 0.98 for nucleus) with Geant4 results. CONCLUSIONS The currently developed TEM-based model of a GNP-laden cell offers unprecedented details of realistic intracellular GNP distributions for nanoscopic computational investigations of GNP-mediated dose enhancement/radiosensitization. A benchmarking study performed with this model showed reasonable agreement between Geant4- and nDPK-calculated intracellular dose deposition by SEs emitted from internalized GNPs, especially under perpendicular incidence - a popular cell irradiation geometry and when the Geant4-Penelope physics model was used.
Collapse
Affiliation(s)
- Sandun Jayarathna
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Amrit Kaphle
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, Houston, TX 77030
| | - Sang Hyun Cho
- Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
2
|
McNamara A, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol 2019; 93:20190334. [PMID: 31738081 DOI: 10.1259/bjr.20190334] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dose in proton radiotherapy is generally prescribed by scaling the physical proton dose by a constant value of 1.1. Relative biological effectiveness (RBE) is defined as the ratio of doses required by two radiation modalities to cause the same level of biological effect. The adoption of an RBE of 1.1. assumes that the biological efficacy of protons is similar to photons, allowing decades of clinical dose prescriptions from photon treatments and protocols to be utilized in proton therapy. There is, however, emerging experimental evidence that indicates that proton RBE varies based on technical, tissue and patient factors. The notion that a single scaling factor may be used to equate the effects of photons and protons across all biological endpoints and doses is too simplistic and raises concern for treatment planning decisions. Here, we review the models that have been developed to better predict RBE variations in tissue based on experimental data as well as using a mechanistic approach.
Collapse
Affiliation(s)
- Aimee McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
3
|
Gholami YH, Maschmeyer R, Kuncic Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep 2019; 9:14346. [PMID: 31586146 PMCID: PMC6778074 DOI: 10.1038/s41598-019-50861-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
In cancer radiation therapy, dose enhancement by nanoparticles has to date been investigated only for external beam radiotherapy (EBRT). Here, we report on an in silico study of nanoparticle-enhanced radiation damage in the context of internal radionuclide therapy. We demonstrate the proof-of-principle that clinically relevant radiotherapeutic isotopes (i.e. 213Bi, 223Ra, 90Y, 177Lu, 67Cu, 64Cu and 89Zr) labeled to clinically relevant superparamagnetic iron oxide nanoparticles results in enhanced radiation damage effects localized to sub-micron scales. We find that radiation dose can be enhanced by up to 20%, vastly outperforming nanoparticle dose enhancement in conventional EBRT. Our results demonstrate that in addition to the favorable spectral characteristics of the isotopes and their proximity to the nanoparticles, clustering of the nanoparticles results in a nonlinear collective effect that amplifies nanoscale radiation damage effects by electron-mediated inter-nanoparticle interactions. In this way, optimal radio-enhancement is achieved when the inter-nanoparticle distance is less than the mean range of the secondary electrons. For the radioisotopes studied here, this corresponds to inter-nanoparticle distances <50 nm, with the strongest effects within 20 nm. The results of this study suggest that radiolabeled nanoparticles offer a novel and potentially highly effective platform for developing next-generation theranostic strategies for cancer medicine.
Collapse
Affiliation(s)
- Yaser Hadi Gholami
- The University of Sydney, Institute of Medical Physics, School of Physics, Sydney, NSW, 2006, Australia.
| | - Richard Maschmeyer
- The University of Sydney, Institute of Medical Physics, School of Physics, Sydney, NSW, 2006, Australia
| | - Zdenka Kuncic
- The University of Sydney, Institute of Medical Physics, School of Physics, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Xu Q, Fang L, Chen B, Zhang H, Wu Q, Zhang H, Wang A, Tong J, Tao S, Tian H. Radon induced mitochondrial dysfunction in human bronchial epithelial cells and epithelial-mesenchymal transition with long-term exposure. Toxicol Res (Camb) 2019; 8:90-100. [PMID: 30746122 PMCID: PMC6334652 DOI: 10.1039/c8tx00181b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023] Open
Abstract
Radon is a naturally occurring radionuclide, which has a wide environmental distributed. It emits multiple high linear energy transfer (LET) alpha particles during radiative decay, and has been regarded as a human carcinogen by the International Agency for Research on Cancer. Currently, residential radon exposure is considered as the second highest cause of lung cancer and the leading cause among nonsmokers. Radon exposure leads to genomic instability, which causes the accumulation of multiple genetic changes and leads to cancer development. However, the molecular basis underlying carcinogenesis, especially the radon-induced changes to mitochondria, has not been fully elucidated. The aim of this study was to explore the dynamic changes in mitochondria along with the cell transformations induced by long-term radon exposure. A malignant transformation model of BEAS-2B cells was established with upto 40 times the usual radon exposure (20 000 Bq m-3, 30 min each time every 3 days). Long-term radon exposure induced EMT-like transformation of epithelial cells in our study, evidenced by decrease in epithelial markers and increase in mesenchymal markers, as well as the loss of cell-cell adhesion and alterations to the morphology of cells from compact shape to a spindle shaped, fibroblast-like morphology. Additionally, the proliferation and migration of cells were increased and apoptosis was decreased with long-term radon exposure. Furthermore, mitochondrial function was up-regulated and the levels of oxidative stress were repressed with long-term radon exposure. Our work explored the dynamic changes of mitochondrial in radon induced malignant transformation of lung bronchial epithelial cells, which could partially elucidate the role of mitochondria in radon induced cell malignancy.
Collapse
Affiliation(s)
- Qian Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Lijun Fang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Bin Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Suzhou Gusu District Center For Disease Prevention And Control , Jiangsu , China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Qianqian Wu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Hongbo Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Suzhou Xiangcheng District For Maternal And Child Care Service Centre , Jiangsu , China
| | - Aiqing Wang
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Hailin Tian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| |
Collapse
|
5
|
Lazarakis P, Incerti S, Ivanchenko V, Kyriakou I, Emfietzoglou D, Corde S, Rosenfeld AB, Lerch M, Tehei M, Guatelli S. Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa6aa] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol 2018; 63:02TR01. [PMID: 29125831 DOI: 10.1088/1361-6560/aa99ce] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.
Collapse
Affiliation(s)
- Zdenka Kuncic
- School of Physics and Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
7
|
Oliver PAK, Thomson RM. A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry. Phys Med Biol 2017; 62:1417-1436. [PMID: 28114113 DOI: 10.1088/1361-6560/aa5136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work investigates how doses to cellular targets depend on cell morphology, as well as relations between cellular doses and doses to bulk tissues and water. Multicellular models of five healthy and cancerous soft tissues are developed based on typical values of cell compartment sizes, elemental compositions and number densities found in the literature. Cells are modelled as two concentric spheres with nucleus and cytoplasm compartments. Monte Carlo simulations are used to calculate the absorbed dose to the nucleus and cytoplasm for incident photon energies of 20-370 keV, relevant for brachytherapy, diagnostic radiology, and out-of-field radiation in higher-energy external beam radiotherapy. Simulations involving cell clusters, single cells and single nuclear cavities are carried out for cell radii between 5 and [Formula: see text]m, and nuclear radii between 2 and [Formula: see text]m. Seven nucleus and cytoplasm elemental compositions representative of animal cells are considered. The presence of a cytoplasm, extracellular matrix and surrounding cells can affect the nuclear dose by up to [Formula: see text]. Differences in cell and nucleus size can affect dose to the nucleus (cytoplasm) of the central cell in a cluster of 13 cells by up to [Formula: see text] ([Formula: see text]). Furthermore, the results of this study demonstrate that neither water nor bulk tissue are reliable substitutes for subcellular targets for incident photon energies <50 keV: nuclear (cytoplasm) doses differ from dose-to-medium by up to [Formula: see text] ([Formula: see text]), and from dose-to-water by up to [Formula: see text] ([Formula: see text]). The largest differences between dose descriptors are seen for the lowest incident photon energies; differences are less than [Formula: see text] for energies [Formula: see text]90 keV. The sensitivity of results with regard to the parameters of the microscopic tissue structure model and cell model geometry, and the importance of the nucleus and cytoplasm as targets for radiation-induced cell death emphasize the importance of accurate models for cellular dosimetry studies.
Collapse
Affiliation(s)
- P A K Oliver
- Department of Physics, Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, K1S 5B6, Canada
| | | |
Collapse
|
8
|
McNamara AL, Kam WWY, Scales N, McMahon SJ, Bennett JW, Byrne HL, Schuemann J, Paganetti H, Banati R, Kuncic Z. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol 2016; 61:5993-6010. [PMID: 27435339 DOI: 10.1088/0031-9155/61/16/5993] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies ∼70 eV, substantially lower than that of liquid water ∼78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.
Collapse
Affiliation(s)
- A L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit St, Boston, MA 02114, USA. School of Physics, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cunha M, Testa E, Komova OV, Nasonova EA, Mel'nikova LA, Shmakova NL, Beuve M. Modeling cell response to low doses of photon irradiation--Part 1: on the origin of fluctuations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:19-30. [PMID: 26590033 DOI: 10.1007/s00411-015-0621-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
Intra- and inter-individual variability is a well-known aspect of biological responses of cells observed at low doses of radiation, whichever the phenomenon considered (adaptive response, bystander effects, genomic instability, etc.). There is growing evidence that low-dose phenomena are related to cell mechanisms other than DNA damage and misrepair, meaning that other cellular structures may play a crucial role. Therefore, in this study, a series of calculations at low doses was carried out to study the distribution of specific energies from different irradiation doses (3, 10 and 30 cGy) in targets of different sizes (0.1, 1 and 10 μm) corresponding to the dimensions of different cell structures. The results obtained show a strong dependence of the probability distributions of specific energies on the target size: targets with dimensions comparable to those of the cell show a Gaussian-like distribution, whereas very small targets are very likely to not be hit. A statistical analysis showed that the level of fluctuations in the fraction of aberrant cells is only related to the fraction of aberrant cells and the number of irradiated cells, regardless of, for instance, the heterogeneity in cell response.
Collapse
Affiliation(s)
- Micaela Cunha
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Etienne Testa
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Olga V Komova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Elena A Nasonova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Larisa A Mel'nikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Nina L Shmakova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Michaël Beuve
- Université de Lyon, 69622, Lyon, France.
- Université de Lyon 1, Villeurbanne, France.
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France.
| |
Collapse
|
10
|
Byrne HL, Domanova W, McNamara AL, Incerti S, Kuncic Z. The cytoplasm as a radiation target: an in silico study of microbeam cell irradiation. Phys Med Biol 2015; 60:2325-37. [PMID: 25715947 DOI: 10.1088/0031-9155/60/6/2325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed in silico microbeam cell irradiation modelling to quantitatively investigate ionisations resulting from soft x-ray and alpha particle microbeams targeting the cytoplasm of a realistic cell model. Our results on the spatial distribution of ionisations show that as x-rays are susceptible to scatter within a cell that can lead to ionisations in the nucleus, soft x-ray microbeams may not be suitable for investigating the DNA damage response to radiation targeting the cytoplasm alone. In contrast, ionisations from an ideal alpha microbeam are tightly confined to the cytoplasm, but a realistic alpha microbeam degrades upon interaction with components upstream of the cellular target. Thus it is difficult to completely rule out a contribution from alpha particle hits to the nucleus when investigating DNA damage response to cytoplasmic irradiation. We find that although the cytoplasm targeting efficiency of an alpha microbeam is better than that of a soft x-ray microbeam (the probability of stray alphas hitting the nucleus is 0.2% compared to 3.6% for x-rays), stray alphas produce more ionisations in the nucleus and thus have greater potential for initiating damage responses therein. Our results suggest that observed biological responses to cytoplasmic irradiation include a small component that can be attributed to stray ionisations in the nucleus resulting from the stochastic nature of particle interactions that cause out-of-beam scatter. This contribution is difficult to isolate experimentally, thus demonstrating the value of the in silico approach.
Collapse
Affiliation(s)
- H L Byrne
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
11
|
Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C. Advances in kilovoltage x-ray beam dosimetry. Phys Med Biol 2014; 59:R183-231. [DOI: 10.1088/0031-9155/59/6/r183] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Byrne HL, McNamara AL, Domanova W, Guatelli S, Kuncic Z. Radiation damage on sub-cellular scales: beyond DNA. Phys Med Biol 2013; 58:1251-67. [DOI: 10.1088/0031-9155/58/5/1251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|