1
|
Teng C, Huang D, Donahue E, Bao JL. Exploring torsional conformer space with physical prior mean function-driven meta-Gaussian processes. J Chem Phys 2023; 159:214111. [PMID: 38051097 DOI: 10.1063/5.0176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
We present a novel approach for systematically exploring the conformational space of small molecules with multiple internal torsions. Identifying unique conformers through a systematic conformational search is important for obtaining accurate thermodynamic functions (e.g., free energy), encompassing contributions from the ensemble of all local minima. Traditional geometry optimizers focus on one structure at a time, lacking transferability from the local potential-energy surface (PES) around a specific minimum to optimize other conformers. In this work, we introduce a physics-driven meta-Gaussian processes (meta-GPs) method that not only enables efficient exploration of target PES for locating local minima but, critically, incorporates physical surrogates that can be applied universally across the optimization of all conformers of the same molecule. Meta-GPs construct surrogate PESs based on the optimization history of prior conformers, dynamically selecting the most suitable prior mean function (representing prior knowledge in Bayesian learning) as a function of the optimization progress. We systematically benchmarked the performance of multiple GP variants for brute-force conformational search of amino acids. Our findings highlight the superior performance of meta-GPs in terms of efficiency, comprehensiveness of conformer discovery, and the distribution of conformers compared to conventional non-surrogate optimizers and other non-meta-GPs. Furthermore, we demonstrate that by concurrently optimizing, training GPs on the fly, and learning PESs, meta-GPs exhibit the capacity to generate high-quality PESs in the torsional space without extensive training data. This represents a promising avenue for physics-based transfer learning via meta-GPs with adaptive priors in exploring torsional conformer space.
Collapse
Affiliation(s)
- Chong Teng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Daniel Huang
- Department of Computer Science, San Francisco State University, San Francisco, California 94132, USA
| | - Elizabeth Donahue
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
2
|
Arab F, Nazari F, Illas F. Artificial Neural Network-Derived Unified Six-Dimensional Potential Energy Surface for Tetra Atomic Isomers of the Biogenic [H, C, N, O] System. J Chem Theory Comput 2023; 19:1186-1196. [PMID: 36735891 PMCID: PMC9979606 DOI: 10.1021/acs.jctc.2c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recognition of different structural patterns in different potential energy surface regions, such as in isomerizing quasilinear tetra atomic molecules, is important for understanding the details of underlying physics and chemistry. In this respect, using three variants of artificial neural networks (ANNs), we investigated the six-dimensional (6-D) singlet potential energy surfaces (PES) of tetra atomic isomers of the biogenic [H, C, N, O] system. At first, we constructed a separate ANN potential for each of the studied isomers. In the next step, a comparative assessment of the separate ANN models led to the setting up of a unified 6-D singlet PES equally and accurately describing all studied isomers. The constructed unified model yields relative energies comparable to those obtained either from the gold standard CCSD(T) method or from separate ANNs for each of the studied isomers. The accuracy of the unified singlet PES is on the order of 10-4 Hartrees (0.1 kcal/mol). The developed PES in this work captures the main features of nonlinear and quasilinear tetra atomic isomers of this biogenic system.
Collapse
Affiliation(s)
- Fatemeh Arab
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences, Zanjan45137-66731, Iran
| | - Fariba Nazari
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences, Zanjan45137-66731, Iran,Center
of Climate Change and Global Warming, Institute
for Advanced Studies in Basic Sciences, Zanjan45137-66731, Iran,
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028Barcelona, Spain,
| |
Collapse
|
3
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
4
|
Kwon HY, Morrow Z, Kelley CT, Jakubikova E. Interpolation Methods for Molecular Potential Energy Surface Construction. J Phys Chem A 2021; 125:9725-9735. [PMID: 34730973 DOI: 10.1021/acs.jpca.1c06812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The concept of a potential energy surface (PES) is one of the most important concepts in modern chemistry. A PES represents the relationship between the chemical system's energy and its geometry (i.e., atom positions) and can provide useful information about the system's chemical properties and reactivity. Construction of accurate PESs with high-level theoretical methodologies, such as density functional theory, is still challenging due to a steep increase in the computational cost with the increase of the system size. Thus, over the past few decades, many different mathematical approaches have been applied to the problem of the cost-efficient PES construction. This article serves as a short overview of interpolative methods for the PES construction, including global polynomial interpolation, trigonometric interpolation, modified Shepard interpolation, interpolative moving least-squares, and the automated PES construction derived from these.
Collapse
Affiliation(s)
- Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zachary Morrow
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - C T Kelley
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Morrow Z, Kwon HY, Kelley CT, Jakubikova E. Efficient Approximation of Potential Energy Surfaces with Mixed-Basis Interpolation. J Chem Theory Comput 2021; 17:5673-5683. [PMID: 34351740 DOI: 10.1021/acs.jctc.1c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential energy surface (PES) describes the energy of a chemical system as a function of its geometry and is a fundamental concept in modern chemistry. A PES provides much useful information about the system, including the structures and energies of various stationary points, such as stable conformers (local minima) and transition states (first-order saddle points) connected by a minimum-energy path. Our group has previously produced surrogate reduced-dimensional PESs using sparse interpolation along chemically significant reaction coordinates, such as bond lengths, bond angles, and torsion angles. These surrogates used a single interpolation basis, either polynomials or trigonometric functions, in every dimension. However, relevant molecular dynamics (MD) simulations often involve some combination of both periodic and nonperiodic coordinates. Using a trigonometric basis on nonperiodic coordinates, such as bond lengths, leads to inaccuracies near the domain boundary. Conversely, polynomial interpolation on the periodic coordinates does not enforce the periodicity of the surrogate PES gradient, leading to nonconservation of total energy even in a microcanonical ensemble. In this work, we present an interpolation method that uses trigonometric interpolation on the periodic reaction coordinates and polynomial interpolation on the nonperiodic coordinates. We apply this method to MD simulations of possible isomerization pathways of azomethane between cis and trans conformers. This method is the only known interpolative method that appropriately conserves total energy in systems with both periodic and nonperiodic reaction coordinates. In addition, compared to all-polynomial interpolation, the mixed basis requires fewer electronic structure calculations to obtain a given level of accuracy, is an order of magnitude faster, and is freely available on GitHub.
Collapse
Affiliation(s)
- Zachary Morrow
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - C T Kelley
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Zapata F, Nucci M, Castaño O, Marazzi M, Frutos LM. Thermal and Mechanochemical Tuning of the Porphyrin Singlet-Triplet Gap for Selective Energy Transfer Processes: A Molecular Dynamics Approach. J Chem Theory Comput 2021; 17:5429-5439. [PMID: 34351751 PMCID: PMC8919258 DOI: 10.1021/acs.jctc.1c00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations provide fundamental knowledge on the reaction mechanism of a given simulated molecular process. Nevertheless, other methodologies based on the "static" exploration of potential energy surfaces are usually employed to firmly provide the reaction coordinate directly related to the reaction mechanism, as is the case in intrinsic reaction coordinates for thermally activated reactions. Photoinduced processes in molecular systems can also be studied with these two strategies, as is the case in the triplet energy transfer process. Triplet energy transfer is a fundamental photophysical process in photochemistry and photobiology, being for instance involved in photodynamic therapy, when generating the highly reactive singlet oxygen species. Here, we study the triplet energy transfer process between porphyrin, a prototypical energy transfer donor, and different biologically relevant acceptors, including molecular oxygen, carotenoids, and rhodopsin. The results obtained by means of nanosecond time-scale molecular dynamics simulations are compared to the "static" determination of the reaction coordinate for such a thermal process, leading to the distortions determining an effective energy transfer. This knowledge was finally applied to propose porphyrin derivatives for producing the required structural modifications in order to tune their singlet-triplet energy gap, thus introducing a mechanochemical description of the mechanism.
Collapse
Affiliation(s)
- Felipe Zapata
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E28805, Spain
| | - Martina Nucci
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E28805, Spain
| | - Obis Castaño
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E28805, Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E28805, Spain.,Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E-28805, Spain
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E28805, Spain.,Instituto de Investigación Química "Andrés M. del Rio" (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33.600, Alcalá de Henares, Madrid E-28805, Spain
| |
Collapse
|
7
|
|
8
|
Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts 2020. [DOI: 10.3390/catal10060691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far out into the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting molecules is registered by a change in their normal vibrational modes and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction with curvature minima reflecting minimal change and curvature maxima, the location of important chemical events such as bond breaking/forming, charge polarization and transfer, rehybridization, etc. A unique decomposition of the path curvature into internal coordinate components provides comprehensive insights into the origins of the chemical changes taking place. After presenting the theoretical background of URVA, we discuss its application to four diverse catalytic processes: (i) the Rh catalyzed methanol carbonylation—the Monsanto process; (ii) the Sharpless epoxidation of allylic alcohols—transition to heterogenous catalysis; (iii) Au(I) assisted [3,3]-sigmatropic rearrangement of allyl acetate; and (iv) the Bacillus subtilis chorismate mutase catalyzed Claisen rearrangement—and show how URVA leads to a new protocol for fine-tuning of existing catalysts and the design of new efficient and eco-friendly catalysts. At the end of this article the pURVA software is introduced. The overall goal of this article is to introduce to the chemical community a new protocol for fine-tuning existing catalytic reactions while aiding in the design of modern and environmentally friendly catalysts.
Collapse
|
9
|
Jasper AW, Sivaramakrishnan R, Klippenstein SJ. Nonthermal rate constants for CH 4 * + X → CH 3 + HX, X = H, O, OH, and O 2. J Chem Phys 2019; 150:114112. [PMID: 30902010 DOI: 10.1063/1.5090394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Quasiclassical trajectories are used to compute nonthermal rate constants, k*, for abstraction reactions involving highly-excited methane CH4 * and the radicals H, O, OH, and O2. Several temperatures and internal energies of methane, Evib, are considered, and significant nonthermal rate enhancements for large Evib are found. Specifically, when CH4 * is internally excited close to its dissociation threshold (Evib ≈ D0 = 104 kcal/mol), its reactivity with H, O, and OH is shown to be collision-rate-limited and to approach that of comparably-sized radicals, such as CH3, with k* > 10-10 cm3 molecule-1 s-1. Rate constants this large are more typically associated with barrierless reactions, and at 1000 K, this represents a nonthermal rate enhancement, k*/k, of more than two orders of magnitude relative to thermal rate constants k. We show that large nonthermal rate constants persist even after significant internal cooling, with k*/k > 10 down to Evib ≈ D0/4. The competition between collisional cooling and nonthermal reactivity is studied using a simple model, and nonthermal reactions are shown to account for up to 35%-50% of the fate of the products of H + CH3 = CH4 * under conditions of practical relevance to combustion. Finally, the accuracy of an effective temperature model for estimating k* from k is quantified.
Collapse
Affiliation(s)
- Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
10
|
Affiliation(s)
- Chen Qu
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Qi Yu
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M. Bowman
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
11
|
Bonnet L, Corchado JC, Espinosa-Garcia J. Pair-correlated speed distributions for the OH+CH4/CD4 reactions: Further remarks on their classical trajectory calculations in a quantum spirit. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Greene SM, Shan X, Clary DC. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions. J Chem Phys 2016; 144:084113. [DOI: 10.1063/1.4942161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Samuel M. Greene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
13
|
Xu X, Chen J, Zhang DH. Global Potential Energy Surface for the H+CH4↔H2+CH3 Reaction using Neural Networks. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/04/373-379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Monge-Palacios M, Rangel C, Espinosa-Garcia J. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction. J Chem Phys 2013; 138:084305. [PMID: 23464149 DOI: 10.1063/1.4792719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
Collapse
Affiliation(s)
- M Monge-Palacios
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|
15
|
Monge-Palacios M, Yang M, Espinosa-García J. QCT and QM calculations of the Cl(2P) + NH3 reaction: influence of the reactant well on the dynamics. Phys Chem Chem Phys 2012; 14:4824-34. [PMID: 22388701 DOI: 10.1039/c2cp00008c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed dynamics study, using both quasi-classical trajectory (QCT) and reduced-dimensional quantum mechanical (QM) calculations, was carried out to understand the reactivity and mechanism of the Cl((2)P) + NH(3)→ HCl + NH(2) gas-phase reaction, which evolves through deep wells in the entry and exit channels. The calculations were performed on an analytical potential energy surface recently developed by our group, PES-2010 [M. Monge-Palacios, C. Rangel, J. C. Corchado and J. Espinosa-Garcia, Int. J. Quantum. Chem., 2011], together with a simplified model surface, mod-PES, in which the reactant well is removed to analyze its influence. The main finding was that the QCT and QM methods show a change of the reaction probability with collision energy, suggesting a change of the atomic-level mechanism of reaction with energy. This change disappeared when the mod-PES was used, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Analysis of the trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) > 5 kcal mol(-1)) practically all trajectories are direct, at low energies (E(coll) < 3 kcal mol(-1)) the trajectories are indirect, i.e., with the mediation of a trapping complex in the entry and/or the exit wells. The reactant complex allows repeated encounters between the reactants, increasing the reaction probability at low energies. The differential cross section results reinforce this change of mechanism, showing also the influence of the reactant well on this reaction. Thus, the PES-2010 surface yields a forward-backward symmetry in the scattering, while when the reactant well is removed with the mod-PES the shape is more isotropic.
Collapse
Affiliation(s)
- M Monge-Palacios
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|