1
|
Cortazar MA, Erickson B, Fong N, Pradhan SJ, Ntini E, Bentley DL. Xrn2 substrate mapping identifies torpedo loading sites and extensive premature termination of RNA pol II transcription. Genes Dev 2022; 36:1062-1078. [PMID: 36396340 PMCID: PMC9744234 DOI: 10.1101/gad.350004.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
The exonuclease torpedo Xrn2 loads onto nascent RNA 5'-PO4 ends and chases down pol II to promote termination downstream from polyA sites. We report that Xrn2 is recruited to preinitiation complexes and "travels" to 3' ends of genes. Mapping of 5'-PO4 ends in nascent RNA identified Xrn2 loading sites stabilized by an active site mutant, Xrn2(D235A). Xrn2 loading sites are approximately two to 20 bases downstream from where CPSF73 cleaves at polyA sites and histone 3' ends. We propose that processing of all mRNA 3' ends comprises cleavage and limited 5'-3' trimming by CPSF73, followed by handoff to Xrn2. A similar handoff occurs at tRNA 3' ends, where cotranscriptional RNase Z cleavage generates novel Xrn2 substrates. Exonuclease-dead Xrn2 increased transcription in 3' flanking regions by inhibiting polyA site-dependent termination. Surprisingly, the mutant Xrn2 also rescued transcription in promoter-proximal regions to the same extent as in 3' flanking regions. eNET-seq revealed Xrn2-mediated degradation of sense and antisense nascent RNA within a few bases of the TSS, where 5'-PO4 ends may be generated by decapping or endonucleolytic cleavage. These results suggest that a major fraction of pol II complexes terminates prematurely close to the start site under normal conditions by an Xrn2-mediated torpedo mechanism.
Collapse
Affiliation(s)
- Michael A. Cortazar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Benjamin Erickson
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Sarala J. Pradhan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (FORTH), Heraklion GR-70013, Greece
| | - David L. Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Erickson B, Sheridan RM, Cortazar M, Bentley DL. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev 2018; 32:1215-1225. [PMID: 30150253 PMCID: PMC6120720 DOI: 10.1101/gad.316810.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Paused RNA polymerase II (Pol II) that piles up near most human promoters is the target of mechanisms that control entry into productive elongation. Whether paused Pol II is a stable or dynamic target remains unresolved. We report that most 5' paused Pol II throughout the genome is turned over within 2 min. This process is revealed under hypertonic conditions that prevent Pol II recruitment to promoters. This turnover requires cell viability but is not prevented by inhibiting transcription elongation, suggesting that it is mediated at the level of termination. When initiation was prevented by triptolide during recovery from high salt, a novel preinitiated state of Pol II lacking the pausing factor Spt5 accumulated at transcription start sites. We propose that Pol II occupancy near 5' ends is governed by a cycle of ongoing assembly of preinitiated complexes that transition to pause sites followed by eviction from the DNA template. This model suggests that mechanisms regulating the transition to productive elongation at pause sites operate on a dynamic population of Pol II that is turning over at rates far higher than previously suspected. We suggest that a plausible alternative to elongation control via escape from a stable pause is by escape from premature termination.
Collapse
Affiliation(s)
- Benjamin Erickson
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael Cortazar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
3
|
Klopf E, Moes M, Amman F, Zimmermann B, von Pelchrzim F, Wagner C, Schroeder R. Nascent RNA signaling to yeast RNA Pol II during transcription elongation. PLoS One 2018; 13:e0194438. [PMID: 29570714 PMCID: PMC5865726 DOI: 10.1371/journal.pone.0194438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
Transcription as the key step in gene expression is a highly regulated process. The speed of transcription elongation depends on the underlying gene sequence and varies on a gene by gene basis. The reason for this sequence dependence is not known in detail. Recently, our group studied the cross talk between the nascent RNA and the transcribing RNA polymerase by screening the Escherichia coli genome for RNA sequences with high affinity to RNA Pol by performing genomic SELEX. This approach led to the identification of RNA polymerase-binding APtamers termed "RAPs". RAPs can have positive and negative effects on gene expression. A subgroup is able to downregulate transcription via the activity of the termination factor Rho. In this study, we used a similar SELEX setup using yeast genomic DNA as source of RNA sequences and highly purified yeast RNA Pol II as bait and obtained almost 1300 yeast-derived RAPs. Yeast RAPs are found throughout the genome within genes and antisense to genes, they are overrepresented in the non-transcribed strand of yeast telomeres and underrepresented in intergenic regions. Genes harbouring a RAP are more likely to show lower mRNA levels. By determining the endogenous expression levels as well as using a reporter system, we show that RAPs located within coding regions can reduce the transcript level downstream of the RAP. Here we demonstrate that RAPs represent a novel type of regulatory RNA signal in Saccharomyces cerevisiae that act in cis and interfere with the elongating transcription machinery to reduce the transcriptional output.
Collapse
Affiliation(s)
- Eva Klopf
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
| | - Murielle Moes
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
| | - Fabian Amman
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
- Institute for Theoretical Chemistry; University of Vienna; Vienna, Austria
| | - Bob Zimmermann
- Department of Molecular Evolution and Development; University of Vienna; Vienna, Austria
| | | | - Christina Wagner
- Institute for Theoretical Chemistry; University of Vienna; Vienna, Austria
| | - Renée Schroeder
- Max F. Perutz Laboratories (MFPL); University of Vienna; Vienna, Austria
| |
Collapse
|
4
|
Liu J, Xiao Y, Zhang T, Ma J. Time to move on: Modeling transcription dynamics during an embryonic transition away from maternal control. Fly (Austin) 2016; 10:101-7. [PMID: 27172244 DOI: 10.1080/19336934.2016.1188231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In a recent study, we investigated the regulation of hunchback (hb) transcription dynamics in Drosophila embryos. Our results suggest that shutdown of hb transcription at early nuclear cycle (nc) 14 is an event associated with the global changes taking place during the mid-blastula transition (MBT). Here we have developed a simple model of hb transcription dynamics during this transition time. With kinetic parameters estimated from our published experimental data, the model describes the dynamical processes of hb gene transcription and hb mRNA accumulation. With two steps, transcription onset upon exiting the previous mitosis followed by a sudden impact that blocks gene activation, the model recapitulates the observed dynamics of hb transcription during the nc14 interphase. The timing of gene inactivation is essential, as its alterations lead to changes in both hb transcription dynamics and hb mRNA levels. Our model provides a clear dynamical picture of hb transcription regulation as one of the many, actively regulated events concurrently taking place during the MBT.
Collapse
Affiliation(s)
- Junbo Liu
- a Division of Biomedical Informatics, Cincinnati Children's Research Foundation , Cincinnati , OH
| | - Yanyu Xiao
- b Department of Mathematical Sciences , University of Cincinnati , Cincinnati , OH
| | - Tongli Zhang
- c Department of Molecular and Cellular Physiology , University of Cincinnati College of Medicine , Cincinnati , OH
| | - Jun Ma
- a Division of Biomedical Informatics, Cincinnati Children's Research Foundation , Cincinnati , OH.,d Division of Developmental Biology, Cincinnati Children's Research Foundation , Cincinnati , OH
| |
Collapse
|
5
|
Schaughency P, Merran J, Corden JL. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet 2014; 10:e1004632. [PMID: 25299594 PMCID: PMC4191890 DOI: 10.1371/journal.pgen.1004632] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Yeast RNA polymerase II (Pol II) terminates transcription of coding transcripts through the polyadenylation (pA) pathway and non-coding transcripts through the non-polyadenylation (non-pA) pathway. We have used PAR-CLIP to map the position of Pol II genome-wide in living yeast cells after depletion of components of either the pA or non-pA termination complexes. We show here that Ysh1, responsible for cleavage at the pA site, is required for efficient removal of Pol II from the template. Depletion of Ysh1 from the nucleus does not, however, lead to readthrough transcription. In contrast, depletion of the termination factor Nrd1 leads to widespread runaway elongation of non-pA transcripts. Depletion of Sen1 also leads to readthrough at non-pA terminators, but in contrast to Nrd1, this readthrough is less processive, or more susceptible to pausing. The data presented here provide delineation of in vivo Pol II termination regions and highlight differences in the sequences that signal termination of different classes of non-pA transcripts. Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.
Collapse
Affiliation(s)
- Paul Schaughency
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jonathan Merran
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mohamadkhani A. Long Noncoding RNAs in Interaction With RNA Binding Proteins in Hepatocellular Carcinoma. HEPATITIS MONTHLY 2014; 14:e18794. [PMID: 24910706 PMCID: PMC4030262 DOI: 10.5812/hepatmon.18794] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gene expression microarrays' analyses provide a description of long noncoding RNAs (lncRNAs) with lack of coding protein function that is often important in human cancer. OBJECTIVES A number of lncRNAs that have been well characterized in hepatocellular carcinoma (HCC) have been scheduled in this study to discuss for protein-lncRNA interaction. MATERIALS AND METHODS The identified lncRNAs were analyzed by bioinformatics tools, starBase and lncRNA db, to anticipate the RNA-binding proteins (RBPs) that tend to interact to HCC-related lncRNAs. The most important predicted RBPs in interaction with well-known lncRNAs in HCC were briefly discussed. RESULTS The lncRNAs HOTTIP, H19, HOTAIR, MALAT1, antisense Igf2r (AIR), HOXA13, GTL2 (also called MEG3) and uc002mb have been reported in association with HCC. Besides, this study predicted that eIF4AIII, PTB and FUS were the most involved RBPs in interaction with HCC-related lncRNAs. CONCLUSIONS This information provides an explanation for the previously valuable literature on the functions of lncRNAs and suggest for the novel therapeutic targeting.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Liver and Pancreatobiliary Disease Research Center, Digestive Disease Research institute, Shartati Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Ashraf Mohamadkhani, Liver and Pancreatobiliary Disease Research Center, Digestive Disease Research institute, Shartati Hospital, Tehran University of Medical Sciences, North Kargar Ave. Tehran, IR Iran. Tel: +98-2182415227, Fax: +98-2182415400, E-mail:
| |
Collapse
|
7
|
Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, Cramer P, Passmore LA. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 2014; 21:175-179. [PMID: 24413056 PMCID: PMC3917824 DOI: 10.1038/nsmb.2753] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
At the 3′ end of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine (Tyr1) residues of its C-terminal domain (CTD). In addition, the associated cleavage and polyadenylation (pA) factor (CPF) cleaves the transcript and adds a polyA tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the pA site, for recruitment of termination factors Pcf11 and Rtt103, and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II Tyr1 dephosphorylation.
Collapse
Affiliation(s)
- Amelie Schreieck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashley D Easter
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stefanie Etzold
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Wiederhold
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michael Lidschreiber
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
8
|
Rincon-Arano H, Parkhurst SM, Groudine M. UpSET-ting the balance: modulating open chromatin features in metazoan genomes. Fly (Austin) 2013; 7:153-60. [PMID: 23649046 DOI: 10.4161/fly.24732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Appropriate gene expression relies on the sophisticated interplay between genetic and epigenetic factors. Histone acetylation and an open chromatin configuration are key features of transcribed regions and are mainly present around active promoters. Our recent identification of the SET-domain containing protein UpSET established a new functional link between the modulation of open chromatin features and active recruitment of well-known co-repressors in metazoans. Structurally, the SET domain of UpSET resembles H3K4 and H3K36 methyltransferases; however, it is does not confer histone methyltransferase activity. Rather than methylating histones to regulate gene expression like other SET domain-containing proteins, UpSET fine-tunes transcription by modulating the chromatin structure around active promoters resulting in suppression of expression of off-target genes or nearby repetitive elements. Chromatin modulation by UpSET occurs in part through its interaction with histone deacetylases. Here, we discuss the different scenarios in which UpSET could play key roles in modulating gene expression.
Collapse
Affiliation(s)
- Hector Rincon-Arano
- Basic Sciences Division; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | | | |
Collapse
|