1
|
Abufalgha AA, Curson ARJ, Lea-Smith DJ, Pott RWM. The effect of Alcanivorax borkumensis SK2, a hydrocarbon-metabolising organism, on gas holdup in a 4-phase bubble column bioprocess. Bioprocess Biosyst Eng 2023; 46:635-644. [PMID: 36757455 DOI: 10.1007/s00449-023-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
To design bioprocesses utilising hydrocarbon-metabolising organisms (HMO) as biocatalysts, the effect of the organism on the hydrodynamics of bubble column reactor (BCR), such as gas holdup, needs to be investigated. Therefore, this study investigates the first use of an HMO, Alcanivorax borkumensis SK2, as a solid phase in the operation and hydrodynamics of a BCR. The study investigated the gas holdup in 3-phase and 4-phase systems in a BCR under ranges of superficial gas velocities (UG) from 1 to 3 cm/s, hydrocarbon (chain length C13-21) concentrations (HC) of 0, 5, and 10% v/v and microbial concentrations (MC) of 0, 0.35, 0.6 g/l. The results indicated that UG was the most significant parameter, as gas holdup increases linearly with increasing UG from 1 to 3 cm/s. Furthermore, the addition of hydrocarbons into the air-deionized water -SK2 system showed the highest increase in the gas holdup, particularly at high UG (above 2 cm/s). The solids (yeast, cornflour, and SK2) phases had differing effects on gas holdup, potentially due to the difference in surface activity. In this work, SK2 addition caused a reduction in the fluid surface tension in the bioprocess which therefore resulted in an increase in the gas holdup in BCR. This work builds upon previous investigations in optimising the hydrodynamics for bubble column hydrocarbon bioprocesses for the application of alkane bioactivation.
Collapse
Affiliation(s)
- Ayman A Abufalgha
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Robert W M Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa. .,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa.
| |
Collapse
|
2
|
Ryu G, Park K, Kim H. Interfacial properties of liquid metal immersed in various liquids. J Colloid Interface Sci 2022; 621:285-294. [DOI: 10.1016/j.jcis.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
3
|
Schrimpf M, Graefe PA, Kaczyna AE, Vorholt AJ, Leitner W. Measuring Droplet Sizes Generated by 3D-Printed Stirrers in a Lean Gas–Liquid–Liquid System Using Borescopy. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Schrimpf
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45740 Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Philipp A. Graefe
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45740 Mülheim an der Ruhr, Germany
| | - Alexandra E. Kaczyna
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45740 Mülheim an der Ruhr, Germany
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45740 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45740 Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| |
Collapse
|
4
|
Abufalgha AA, Pott RWM, Clarke KG. Quantification of oxygen transfer coefficients in simulated hydrocarbon-based bioprocesses in a bubble column bioreactor. Bioprocess Biosyst Eng 2021; 44:1913-1921. [PMID: 33893834 DOI: 10.1007/s00449-021-02571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/09/2021] [Indexed: 12/01/2022]
Abstract
This study investigates the overall volumetric oxygen transfer coefficient (KLa) in multiphase hydrocarbon-based bioprocess under a range of hydrocarbon concentrations (HC), solid loadings (deactivated yeast) (SL) and superficial gas velocities (UG) in a bubble column reactor (BCR). KLa increased with increasing UG in the air-water system; due to an increase in the number of small bubbles which enhanced gas holdup. In air-water-yeast systems, the initial addition of yeast increased KLa significantly. Further increases in SL reduced KLa, due to increases in the bubble size with increasing SL. KLa decreased when HC was added in air-water-hydrocarbon systems. However, UG, SL and HC affected KLa differently in air-water-yeast-hydrocarbon systems: an indication of the complex interactions between the yeast and hydrocarbon phases which changed the system's hydrodynamics and therefore affected KL. This work illustrates the effect of the operating conditions (SL, HC and UG) on oxygen transfer behaviour in multiphase systems.
Collapse
Affiliation(s)
- Ayman A Abufalgha
- DST-NRF Centre of Excellence in Catalysis (c* Change), Pretoria, South Africa.,Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa
| | - Robert W M Pott
- DST-NRF Centre of Excellence in Catalysis (c* Change), Pretoria, South Africa. .,Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa.
| | - Kim G Clarke
- DST-NRF Centre of Excellence in Catalysis (c* Change), Pretoria, South Africa.,Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa
| |
Collapse
|
5
|
Gakingo G, Clarke K, Louw T. A numerical investigation of the hydrodynamics and mass transfer in a three-phase gas-liquid-liquid stirred tank reactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Emmerich J, Tang Q, Wang Y, Neubauer P, Junne S, Maaß S. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes. Appl Microbiol Biotechnol 2018; 102:7293-7308. [DOI: 10.1007/s00253-018-9194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|
8
|
Westbrook AW, Ren X, Moo-Young M, Chou CP. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineeredBacillus subtilis. Biotechnol Bioeng 2018; 115:1239-1252. [DOI: 10.1002/bit.26551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Murray Moo-Young
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
9
|
Shikhov I, Arns CH. Temperature-Dependent Oxygen Effect on NMR D-[Formula: see text] Relaxation-Diffusion Correlation of n-Alkanes. APPLIED MAGNETIC RESONANCE 2016; 47:1391-1408. [PMID: 27881902 PMCID: PMC5099375 DOI: 10.1007/s00723-016-0830-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/31/2016] [Indexed: 05/27/2023]
Abstract
Nuclear magnetic resonance (NMR) diffusion-relaxation correlation experiments (D-[Formula: see text]) are widely used for the petrophysical characterisation of rocks saturated with petroleum fluids both in situ and for laboratory analyses. The encoding for both diffusion and relaxation offers increased fluid typing contrast by discriminating fluids based on their self-diffusion coefficients, while relaxation times provide information about the interaction of solid and fluid phases and associated confinement geometry (if NMR responses of pure fluids at particular temperature and pressure are known). Petrophysical interpretation of D-[Formula: see text] correlation maps is typically assisted by the "standard alkane line"-a relaxation-diffusion correlation valid for pure normal alkanes and their mixtures in the absence of restrictions to diffusing molecules and effects of internal gradients. This correlation assumes fluids are free from paramagnetic impurities. In situations where fluid samples cannot be maintained at air-free state the diffusion-relaxation response of fluids shift towards shorter relaxation times due to oxygen paramagnetic relaxation enhancement. Interpretation of such a response using the "standard alkane line" would be erroneous and is further complicated by the temperature-dependence of oxygen solubility for each component of the alkane mixture. We propose a diffusion-relaxation correlation suitable for interpretation of low-field NMR D-[Formula: see text] responses of normal alkanes and their mixtures saturating rocks over a broad temperature range, in equilibrium with atmospheric air. We review and where necessary revise existing viscosity-relaxation correlations. Findings are applied to diffusion-relaxation dependencies taking into account the temperature dependence of oxygen solubility and solvent vapour pressure. The effect is demonstrated on a partially saturated carbonate rock.
Collapse
Affiliation(s)
- Igor Shikhov
- School of Petroleum Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Christoph H. Arns
- School of Petroleum Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
10
|
Ngo TH, Schumpe A. Absorption of CO 2 into Alkane/Water Emulsions in a Stirred Tank. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2012. [DOI: 10.1252/jcej.12we036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thanh Hai Ngo
- Institute of Technical Chemistry, Technische Universität Braunschweig
| | - Adrian Schumpe
- Institute of Technical Chemistry, Technische Universität Braunschweig
| |
Collapse
|