1
|
Hernández G, Vazquez-Pianzola P. eIF4E as a molecular wildcard in metazoans RNA metabolism. Biol Rev Camb Philos Soc 2023; 98:2284-2306. [PMID: 37553111 DOI: 10.1111/brv.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, Mexico City, 14080, Mexico
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Berne, 3012, Switzerland
| |
Collapse
|
2
|
Quentin D, Schuhmacher JS, Klink BU, Lauer J, Shaikh TR, Huis In 't Veld PJ, Welp LM, Urlaub H, Zerial M, Raunser S. Structural basis of mRNA binding by the human FERRY Rab5 effector complex. Mol Cell 2023; 83:1856-1871.e9. [PMID: 37267906 DOI: 10.1016/j.molcel.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/05/2022] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
The pentameric FERRY Rab5 effector complex is a molecular link between mRNA and early endosomes in mRNA intracellular distribution. Here, we determine the cryo-EM structure of human FERRY. It reveals a unique clamp-like architecture that bears no resemblance to any known structure of Rab effectors. A combination of functional and mutational studies reveals that while the Fy-2 C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils and Fy-5 concur to bind mRNA. Mutations causing truncations of Fy-2 in patients with neurological disorders impair Rab5 binding or FERRY complex assembly. Thus, Fy-2 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via Rab5. Our study provides mechanistic insights into long-distance mRNA transport and demonstrates that the particular architecture of FERRY is closely linked to a previously undescribed mode of RNA binding, involving coiled-coil domains.
Collapse
Affiliation(s)
- Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Jan S Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Björn U Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Center for Soft Nanoscience and Institute of Molecular Physics and Biophysics, 48149 Münster, Germany
| | - Jeni Lauer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tanvir R Shaikh
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| |
Collapse
|
3
|
Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs. Nat Commun 2022; 13:6355. [PMID: 36289223 PMCID: PMC9606379 DOI: 10.1038/s41467-022-34004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Intracellular RNA localization is a widespread and dynamic phenomenon that compartmentalizes gene expression and contributes to the functional polarization of cells. Thus far, mechanisms of RNA localization identified in Drosophila have been based on a few RNAs in different tissues, and a comprehensive mechanistic analysis of RNA localization in a single tissue is lacking. Here, by subcellular spatial transcriptomics we identify RNAs localized in the apical and basal domains of the columnar follicular epithelium (FE) and we analyze the mechanisms mediating their localization. Whereas the dynein/BicD/Egl machinery controls apical RNA localization, basally-targeted RNAs require kinesin-1 to overcome a default dynein-mediated transport. Moreover, a non-canonical, translation- and dynein-dependent mechanism mediates apical localization of a subgroup of dynein-activating adaptor-encoding RNAs (BicD, Bsg25D, hook). Altogether, our study identifies at least three mechanisms underlying RNA localization in the FE, and suggests a possible link between RNA localization and dynein/dynactin/adaptor complex formation in vivo.
Collapse
|
4
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
5
|
Safieddine A, Coleno E, Salloum S, Imbert A, Traboulsi AM, Kwon OS, Lionneton F, Georget V, Robert MC, Gostan T, Lecellier CH, Chouaib R, Pichon X, Le Hir H, Zibara K, Mueller F, Walter T, Peter M, Bertrand E. A choreography of centrosomal mRNAs reveals a conserved localization mechanism involving active polysome transport. Nat Commun 2021; 12:1352. [PMID: 33649340 PMCID: PMC7921559 DOI: 10.1038/s41467-021-21585-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Local translation allows for a spatial control of gene expression. Here, we use high-throughput smFISH to screen centrosomal protein-coding genes, and we describe 8 human mRNAs accumulating at centrosomes. These mRNAs localize at different stages during cell cycle with a remarkable choreography, indicating a finely regulated translational program at centrosomes. Interestingly, drug treatments and reporter analyses reveal a common translation-dependent localization mechanism requiring the nascent protein. Using ASPM and NUMA1 as models, single mRNA and polysome imaging reveals active movements of endogenous polysomes towards the centrosome at the onset of mitosis, when these mRNAs start localizing. ASPM polysomes associate with microtubules and localize by either motor-driven transport or microtubule pulling. Remarkably, the Drosophila orthologs of the human centrosomal mRNAs also localize to centrosomes and also require translation. These data identify a conserved family of centrosomal mRNAs that localize by active polysome transport mediated by nascent proteins. Centrosomes function as microtubule organizing centers where several mRNAs accumulate. By employing high-throughput single molecule FISH screening, the authors discover that 8 human mRNAs localize to centrosomes with unique cell cycle dependent patterns using an active polysome targeting mechanism.
Collapse
Affiliation(s)
- Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. .,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France. .,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Soha Salloum
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Arthur Imbert
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Fontainebleau, France.,Institut Curie, Paris, Cedex, France.,INSERM, U900, Paris, Cedex, France
| | - Abdel-Meneem Traboulsi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | | | | | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Racha Chouaib
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Xavier Pichon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Kazem Zibara
- ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, Paris, France
| | - Thomas Walter
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Fontainebleau, France.,Institut Curie, Paris, Cedex, France.,INSERM, U900, Paris, Cedex, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. .,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France. .,Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
6
|
Bhagavatula S, Knust E. A putative stem-loop structure in Drosophila crumbs is required for mRNA localisation in epithelia and germline cells. J Cell Sci 2021; 134:224086. [PMID: 33310910 DOI: 10.1242/jcs.236497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
Crumbs (Crb) is an evolutionarily conserved transmembrane protein localised to the apical membrane of epithelial cells. Loss or mislocalisation of Crb is often associated with disruption of apicobasal cell polarity. crb mRNA is also apically enriched in epithelial cells, and, as shown here, accumulates in the oocyte of developing egg chambers. We narrowed down the localisation element (LE) of crb mRNA to 47 nucleotides, which form a putative stem-loop structure that may be recognised by Egalitarian (Egl). Mutations in conserved nucleotides abrogate apical transport. crb mRNA enrichment in the oocyte is affected in egl mutant egg chambers. A CRISPR-based genomic deletion of the crb locus that includes the LE disrupts asymmetric crb mRNA localisation in epithelia and prevents its accumulation in the oocyte during early stages of oogenesis, but does not affect Crb protein localisation in embryonic and follicular epithelia. However, flies lacking the LE show ectopic Crb protein expression in the nurse cells. These data suggest an additional role for the Drosophila 3'-UTR in regulating translation in a tissue-specific manner.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Srija Bhagavatula
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
7
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
8
|
Shepard KA, Korsak LIT, DeBartolo D, Akins MR. Axonal localization of the fragile X family of RNA binding proteins is conserved across mammals. J Comp Neurol 2019; 528:502-519. [PMID: 31502255 DOI: 10.1002/cne.24772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Spatial segregation of proteins to neuronal axons arises in part from local translation of mRNAs that are first transported into axons in ribonucleoprotein particles (RNPs), complexes containing mRNAs and RNA binding proteins. Understanding the importance of local translation for a particular circuit requires not only identifying axonal RNPs and their mRNA cargoes, but also whether these RNPs are broadly conserved or restricted to only a few species. Fragile X granules (FXGs) are axonal RNPs containing the fragile X related family of RNA binding proteins along with ribosomes and specific mRNAs. FXGs were previously identified in mouse, rat, and human brains in a conserved subset of neuronal circuits but with species-dependent developmental profiles. Here, we asked whether FXGs are a broadly conserved feature of the mammalian brain and sought to better understand the species-dependent developmental expression pattern. We found FXGs in a conserved subset of neurons and circuits in the brains of every examined species that together include mammalian taxa separated by up to 160 million years of divergent evolution. A developmental analysis of rodents revealed that FXG expression in frontal cortex and olfactory bulb followed consistent patterns in all species examined. In contrast, FXGs in hippocampal mossy fibers increased in abundance across development for most species but decreased across development in guinea pigs and members of the Mus genus, animals that navigate particularly small home ranges in the wild. The widespread conservation of FXGs suggests that axonal translation is an ancient, conserved mechanism for regulating the proteome of mammalian axons.
Collapse
Affiliation(s)
| | - Lulu I T Korsak
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, Pennsylvania.,Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Guo ML, Sun MX, Lan JZ, Yan LS, Zhang JJ, Hu XX, Xu S, Mao DH, Yang HS, Liu YW, Chen TX. Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells. Cell Biochem Funct 2019; 37:72-83. [PMID: 30773657 DOI: 10.1002/cbf.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer cell progression and proliferation increase cell density, resulting in changes to the tumour site, including the microenvironment. What is not known is if increased cell density influences the aggressiveness of cancer cells, especially their proliferation, migration, and invasion capabilities. In this study, we found that dense cell culture enhances the aggressiveness of the metastatic cancer cell lines, 4T1 and ZR-75-30, by increasing their proliferation, migration, and invasion capabilities. However, a less metastatic cell line, MCF-7, did not show an increase in aggressiveness, following dense cell culture conditions. We conducted a differential proteomic analysis on 4T1 cells cultured under dense or sparse conditions and identified an increase in expression for proteins involved in migration, including focal adhesion, cytoskeletal reorganization, and transendothelial migration. In contrast, 4T1 cells grown under sparse conditions had higher expression levels for proteins involved in metabolism, including lipid and phospholipid binding, lipid and cholesterol transporter activity, and protein binding. These results suggest that the high-density tumour microenvironment can cause a change in cellular behaviour, leading towards more aggressive cancers. SIGNIFICANCE OF THE STUDY: Metastasis of cancer cells is an obstacle to the clinical treatment of cancer. We found that dense cultures made metastatic cancer cells more potent in terms of proliferation, migration, and invasion. The proteomic and bioinformatic analyses provided some valuable clues for further intensive studies about the effects of cell density on cancer cell aggressiveness, which were associated with events such as pre-mRNA splicing and RNA transport, focal adhesion and cytoskeleton reorganization, ribosome biogenesis, and transendothelial migration, or associated with proteins, such as JAM-1 and S100A11. This investigation gives us new perspectives to investigate the metastasis mechanisms related to the microenvironment of tumour sites.
Collapse
Affiliation(s)
- Man-Lan Guo
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi-Xin Sun
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jin-Zhi Lan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li-Sha Yan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing-Juan Zhang
- Human Functional Laboratory, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiao-Xia Hu
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shu Xu
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Da-Hua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Hai-Song Yang
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ya-Wei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Xiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Vazquez-Pianzola P, Schaller B, Colombo M, Beuchle D, Neuenschwander S, Marcil A, Bruggmann R, Suter B. The mRNA transportome of the BicD/Egl transport machinery. RNA Biol 2016; 14:73-89. [PMID: 27801632 PMCID: PMC5270521 DOI: 10.1080/15476286.2016.1251542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
mRNA (mRNA) transport focuses the expression of encoded proteins to specific regions within cells providing them with the means to assume specific functions and even identities. BicD and the mRNA binding protein Egl interact with the microtubule motor dynein to localize mRNAs in Drosophila. Because relatively few mRNA cargos were known, we isolated and identified Egl::GFP associated mRNAs. The top candidates were validated by qPCR, in situ hybridization and genetically by showing that their localization requires BicD. In young embryos these Egl target mRNAs are preferentially localized apically, between the plasma membrane and the blastoderm nuclei, but also in the pole plasm at the posterior pole. Egl targets expressed in the ovary were mostly enriched in the oocyte and some were apically localized in follicle cells. The identification of a large group of novel mRNAs associated with BicD/Egl points to several novel developmental and physiological functions of this dynein dependent localization machinery. The verified dataset also allowed us to develop a tool that predicts conserved A'-form-like stem loops that serve as localization elements in 3′UTRs.
Collapse
Affiliation(s)
| | - Bogdan Schaller
- a Institute of Cell Biology, University of Bern , Bern , Switzerland
| | - Martino Colombo
- b Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern , Bern , Switzerland.,c Department of Chemistry and Biochemistry , University of Bern , Bern , Switzerland
| | - Dirk Beuchle
- a Institute of Cell Biology, University of Bern , Bern , Switzerland
| | - Samuel Neuenschwander
- b Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern , Bern , Switzerland.,d Vital-IT, Swiss Institute of Bioinformatics , Lausanne , Switzerland
| | - Anne Marcil
- e National Research Council Canada, Human Health Therapeutics Portfolio, Building Montréal - Royalmount , Montreal , Quebec , Canada
| | - Rémy Bruggmann
- b Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern , Bern , Switzerland
| | - Beat Suter
- a Institute of Cell Biology, University of Bern , Bern , Switzerland
| |
Collapse
|
12
|
A role for tuned levels of nucleosome remodeler subunit ACF1 during Drosophila oogenesis. Dev Biol 2016; 411:217-230. [PMID: 26851213 DOI: 10.1016/j.ydbio.2016.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/11/2015] [Accepted: 01/31/2016] [Indexed: 11/23/2022]
Abstract
The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf1(7) allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf1(1) allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf1(1) deletion--despite disruption of the Acf1 reading frame--expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis.
Collapse
|
13
|
Shan X, Williams WP. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination. Front Microbiol 2014; 5:364. [PMID: 25101068 PMCID: PMC4104783 DOI: 10.3389/fmicb.2014.00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/29/2014] [Indexed: 12/29/2022] Open
Abstract
Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. flavus infection and aflatoxin accumulation.
Collapse
Affiliation(s)
- Xueyan Shan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State UniversityMississippi, MS, USA
| | - W. Paul Williams
- Agricultural Research Service, United States Department of Agriculture, Corn Host Plant Resistance Research UnitMississippi, MS, USA
| |
Collapse
|
14
|
Shahbabian K, Jeronimo C, Forget A, Robert F, Chartrand P. Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic Acids Res 2014; 42:8692-704. [PMID: 25013181 PMCID: PMC4117797 DOI: 10.1093/nar/gku597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Messenger RNA (mRNA) localization is coupled to the translational repression of transcripts during their transport. It is still unknown if this coupling depends on physical interactions between translational control and mRNA localization machineries, and how these interactions are established at the molecular level. In yeast, localization of transcripts like ASH1 to the bud depends on the RNA-binding protein She2. During its transport, ASH1 mRNA translation is repressed by Puf6. Herein, we report that She2 recruits Puf6 on ASH1 co-transcriptionally. The recruitment of Puf6 depends on prior co-transcriptional loading of Loc1, an exclusively nuclear protein. These proteins form a ternary complex, in which Loc1 bridges Puf6 to She2, that binds the ASH1 3′UTR. Using a genome-wide ChIP-chip approach, we identified over 40 novel targets of Puf6, including several bud-localized mRNAs. Interestingly, the co-transcriptional recruitment of Puf6 on genes coding for these bud-localized mRNAs is also She2- and Loc1-dependent. Our results suggest a coordinated assembly of localization and translational control machineries on localized mRNAs during transcription, and underline the importance of co-transcriptional events in establishing the cytoplasmic fate of mRNAs.
Collapse
Affiliation(s)
- Karen Shahbabian
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3C 3J7, Canada
| | - Célia Jeronimo
- Département de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | - Amélie Forget
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3C 3J7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, Canada Département de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | - Pascal Chartrand
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
15
|
Asters MC, Williams WP, Perkins AD, Mylroie JE, Windham GL, Shan X. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize. Sci Rep 2014; 4:4815. [PMID: 24770700 PMCID: PMC4001098 DOI: 10.1038/srep04815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions.
Collapse
Affiliation(s)
- Matthew C. Asters
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - W. Paul Williams
- Agricultural Research Service, United States Department of Agriculture, Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi, USA
| | - Andy D. Perkins
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, Mississippi, USA
| | - J. Erik Mylroie
- Agricultural Research Service, United States Department of Agriculture, Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi, USA
| | - Gary L. Windham
- Agricultural Research Service, United States Department of Agriculture, Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi, USA
| | - Xueyan Shan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
16
|
Vazquez-Pianzola P, Adam J, Haldemann D, Hain D, Urlaub H, Suter B. Clathrin heavy chain plays multiple roles in polarizing the Drosophila oocyte downstream of Bic-D. Development 2014; 141:1915-26. [PMID: 24718986 DOI: 10.1242/dev.099432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors form a transport machinery that localizes a remarkable diversity of mRNAs to specific cellular regions during oogenesis and embryogenesis. Bic-D family proteins also promote dynein-dependent transport of Golgi vesicles, lipid droplets, synaptic vesicles and nuclei. However, the transport of these different cargoes is still poorly understood. We searched for novel proteins that either mediate Bic-D-dependent transport processes or are transported by them. Clathrin heavy chain (Chc) co-immunopurifies with Bic-D in embryos and ovaries, and a fraction of Chc colocalizes with Bic-D. Both proteins control posterior patterning of the Drosophila oocyte and endocytosis. Although the role of Chc in endocytosis is well established, our results show that Bic-D is also needed for the elevated endocytic activity at the posterior of the oocyte. Apart from affecting endocytosis indirectly by its role in osk mRNA localization, Bic-D is also required to transport Chc mRNA into the oocyte and for transport and proper localization of Chc protein to the oocyte cortex, pointing to an additional, more direct role of Bic-D in the endocytic pathway. Furthermore, similar to Bic-D, Chc also contributes to proper localization of osk mRNA and to oocyte growth. However, in contrast to other endocytic components and factors of the endocytic recycling pathway, such as Rabenosyn-5 (Rbsn-5) and Rab11, Chc is needed during early stages of oogenesis (from stage 6 onwards) to localize osk mRNA correctly. Moreover, we also uncovered a novel, presumably endocytosis-independent, role of Chc in the establishment of microtubule polarity in stage 6 oocytes.
Collapse
|
17
|
Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA (NEW YORK, N.Y.) 2013; 19:1019-1037. [PMID: 23861535 PMCID: PMC3708524 DOI: 10.1261/rna.039164.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.
Collapse
|
18
|
Biogenic membranes of the chloroplast in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2012; 109:19286-91. [PMID: 23129655 DOI: 10.1073/pnas.1209860109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The polypeptide subunits of the photosynthetic electron transport complexes in plants and algae are encoded by two genomes. Nuclear genome-encoded subunits are synthesized in the cytoplasm by 80S ribosomes, imported across the chloroplast envelope, and assembled with the subunits that are encoded by the plastid genome. Plastid genome-encoded subunits are synthesized by 70S chloroplast ribosomes directly into membranes that are widely believed to belong to the photosynthetic thylakoid vesicles. However, in situ evidence suggested that subunits of photosystem II are synthesized in specific regions within the chloroplast and cytoplasm of Chlamydomonas. Our results provide biochemical and in situ evidence of biogenic membranes that are localized to these translation zones. A "chloroplast translation membrane" is bound by the translation machinery and appears to be privileged for the synthesis of polypeptides encoded by the plastid genome. Membrane domains of the chloroplast envelope are located adjacent to the cytoplasmic translation zone and enriched in the translocons of the outer and inner chloroplast envelope membranes protein import complexes, suggesting a coordination of protein synthesis and import. Our findings contribute to a current realization that biogenic processes are compartmentalized within organelles and bacteria.
Collapse
|