1
|
Tzeng YL, Sannigrahi S, Berman Z, Bourne E, Edwards JL, Bazan JA, Turner AN, Moir JWB, Stephens DS. Acquisition of Gonococcal AniA-NorB Pathway by the Neisseria meningitidis Urethritis Clade Confers Denitrifying and Microaerobic Respiration Advantages for Urogenital Adaptation. Infect Immun 2023; 91:e0007923. [PMID: 37092998 PMCID: PMC10187123 DOI: 10.1128/iai.00079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Neisseria meningitidis historically has been an infrequent and sporadic cause of urethritis and other urogenital infections. However, a nonencapsulated meningococcal clade belonging to the hyperinvasive clonal complex 11.2 lineage has recently emerged and caused clusters of urethritis cases in the United States and other countries. One of the genetic signatures of the emerging N. meningitidis urethritis clade (NmUC) is a chromosomal gene conversion event resulting in the acquisition of the Neisseria gonorrhoeae denitrification apparatus-the N. gonorrhoeae alleles encoding the nitrite reductase AniA, the nitric oxide (NO) reductase NorB, and the intergenic promoter region. The biological importance of the N. gonorrhoeae AniA-NorB for adaptation of the NmUC to a new environmental niche is investigated herein. We found that oxygen consumption, nitrite utilization, and NO production were significantly altered by the conversion event, resulting in different denitrifying aerobic and microaerobic growth of the clade. Further, transcription of aniA and norB in NmUC isolates differed from canonical N. meningitidis, and important polymorphisms within the intergenic region, which influenced aniA promoter activity of the NmUC, were identified. The contributions of three known meningococcal regulators (NsrR, FNR, and NarQP) in controlling the denitrification pathway and endogenous NO metabolism were distinct. Overall, transcription of aniA was dampened relative to canonical N. meningitidis, and this correlated with the lower NO accumulation in the clade. Denitrification and microaerobic respiration were bolstered, and protection against host-derived NO was likely enhanced. The acquisition of the N. gonorrhoeae denitrification pathway by the NmUC supports the clade's adaptation and survival in a microaerobic urogenital environment.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zachary Berman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily Bourne
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Jose A. Bazan
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James W. B. Moir
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Tzeng YL, Stephens DS. A Narrative Review of the W, X, Y, E, and NG of Meningococcal Disease: Emerging Capsular Groups, Pathotypes, and Global Control. Microorganisms 2021; 9:microorganisms9030519. [PMID: 33802567 PMCID: PMC7999845 DOI: 10.3390/microorganisms9030519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis, carried in the human nasopharynx asymptomatically by ~10% of the population, remains a leading cause of meningitis and rapidly fatal sepsis, usually in otherwise healthy individuals. The epidemiology of invasive meningococcal disease (IMD) varies substantially by geography and over time and is now influenced by meningococcal vaccines and in 2020–2021 by COVID-19 pandemic containment measures. While 12 capsular groups, defined by capsular polysaccharide structures, can be expressed by N. meningitidis, groups A, B, and C historically caused most IMD. However, the use of mono-, bi-, and quadrivalent-polysaccharide-conjugate vaccines, the introduction of protein-based vaccines for group B, natural disease fluctuations, new drugs (e.g., eculizumab) that increase meningococcal susceptibility, changing transmission dynamics and meningococcal evolution are impacting the incidence of the capsular groups causing IMD. While the ability to spread and cause illness vary considerably, capsular groups W, X, and Y now cause significant IMD. In addition, group E and nongroupable meningococci have appeared as a cause of invasive disease, and a nongroupable N. meningitidis pathotype of the hypervirulent clonal complex 11 is causing sexually transmitted urethritis cases and outbreaks. Carriage and IMD of the previously “minor” N. meningitidis are reviewed and the need for polyvalent meningococcal vaccines emphasized.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +404-727-8357
| |
Collapse
|