1
|
Stewart EL, Counoupas C, Steain M, Ashley C, Alca S, Hartley-Tassell L, von Itzstein M, Britton WJ, Petrovsky N, Triccas JA. Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a cellular receptor for delta inulin adjuvant. Immunol Cell Biol 2024; 102:593-604. [PMID: 38757764 PMCID: PMC11296934 DOI: 10.1111/imcb.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition. In vitro uptake of Advax particles by macrophage cell lines was substantially greater than that of latex beads of comparable size, suggesting an active uptake mechanism by phagocytic cells. Using a lectin array, Advax particles were recognized by lectins specific for various carbohydrate structures including mannosyl, N-acetylgalactosamine and galactose moieties. Expression in nonphagocytic cells of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), a C-type lectin receptor, resulted in enhanced uptake of fluorescent Advax particles compared with mock-transfected cells. Advax uptake was reduced with the addition of ethylenediaminetetraacetic acid and mannan to cells, which are known inhibitors of DC-SIGN function. Finally, a specific blockade of DC-SIGN using a neutralizing antibody abrogated Advax uptake in DC-SIGN-expressing cells. Together, these results identify DC-SIGN as a putative receptor for Advax. Given the known immunomodulatory role of DC-SIGN, the findings described here have implications for the use of Advax adjuvants in humans and inform future mechanistic studies.
Collapse
Affiliation(s)
- Erica L Stewart
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Megan Steain
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Caroline Ashley
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Sibel Alca
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | | | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Warwick J Britton
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
| | | | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| |
Collapse
|
2
|
Zhao X, Jiao L, Liu D, Yang T, Zhang Y, Zhou A, Wen Z, Zhang K, Xie J. A phycoerythrin isolated from Rhodomonas salina induces apoptosis via ERK/Bak and JNK/Caspase-3 pathway in A549 cells. Int J Biol Macromol 2023; 235:123838. [PMID: 36842747 DOI: 10.1016/j.ijbiomac.2023.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Rhodomonas salina, Cryptophyta, Rhodomonas genus, is a valuable source for live feed in aquaculture and for the production of phycoerythrin (PE). In this study, PE was extracted from Rhodomonas salina and characterized as having a molecular weight of approximately 24 kDa, an absorbance at 545 nm, and a purity of up to 6.61 (which meets reagent grade requirements with an OD545/OD280 ratio >4). The effects of PE on anticancer activity and its underlying mechanisms were evaluated to assess the immunomodulatory potential on the human lung cancer A549 cell line. Biochemical assays and western blot analysis were applied to confirm the immune mechanisms. The results showed that after 24 h of exposure to PE, the proliferation of A549 cells was significantly and dose-dependently decreased. PE also caused the generation of reactive oxygen species (ROS) and a decrease in mitochondrial membrane potential (MMP). The further results showed that PE can remarkably enhance the protein levels of cleaved caspase-3 and p53. Simultaneously, the BCL-2 family was also affected and had some changes, such as the dramatically enhance of Bim and Bak and the decrease of Bcl-2 level. However, it is interesting to note that there was no apparent alteration in Bax expression during the experiment. Furthermore, the biological mechanism for the potential of PE to induce apoptosis showed that the ERK/Bak and the JNK/caspase-3 signaling pathway were activated. This study provides evidence that the anticancer activity of PE in Rhodomonas salina may have potential for preventing cancer and serving as a novel immunostimulant in the pharmaceutical industry.
Collapse
Affiliation(s)
- Xiaotong Zhao
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Clinical Chemistry Program, Department of Chemistry, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, United States
| | - Lijuan Jiao
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Danting Liu
- Clinical Chemistry Program, Department of Chemistry, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, United States
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, United States
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States
| | - Kunsheng Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Yin T, Zhang X, Iwatani S, Miyanaga K, Yamamoto N. Uptake of Levilactobacillus brevis JCM 1059 by THP-1 Cells via Interaction between SlpB and CAP-1 Promotes Cytokine Production. Microorganisms 2023; 11:microorganisms11020247. [PMID: 36838212 PMCID: PMC9962577 DOI: 10.3390/microorganisms11020247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Several probiotic lactic acid bacteria (LAB) exert immunomodulatory effects on the host. However, the reasons for the different effects of LAB have not been fully elucidated. To understand the different immunomodulatory effects of LAB, we evaluated the levels of critical molecules in differentiated monocytic THP-1 and dendritic cells (DCs) following the uptake of various LAB strains. Lactobacillus helveticus JCM 1120, Lactobacillus acidophilus JCM 1132, Levilactobacillus brevis JCM 1059, and Lentilactobacillus kefiri JCM 5818 showed significantly higher uptake among the 12 LAB species tested. The uptake of microbeads by THP-1 DC increased when coupled with the surface layer proteins (Slps) from the tested strains. SlpB was mainly observed in the L. brevis JCM 1059 Slps extract. The expected cell surface receptor for SlpB on THP-1 DC was purified using SlpB-coupled affinity resin and identified as adenylyl cyclase-associated protein 1 (CAP-1). SlpB binding to THP-1 DC decreased after the addition of anti-CAP-1 and anti-DC-SIGN antibodies but not after the addition of anti-macrophage-inducible C-type lectin (Mincle) antibody. These results suggest that SlpB on L. brevis JCM 1059 plays preferentially binds to CAP-1 on THP-1 DC and plays a crucial role in bacterial uptake by THP-1 cells as well as in subsequent interleukin-12 (IL-12) production.
Collapse
Affiliation(s)
- Tingyu Yin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
| | - Xiaoxi Zhang
- Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Tsukuba Biotechnology Research Center, Astellas Pharma Inc., 5-2-3, Tokodai, Tsukuba-shi 300-2698, Ibaraki, Japan
| | - Kazuhiko Miyanaga
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Correspondence: ; Tel.: +81-45-924-5105
| |
Collapse
|
4
|
Beirag N, Kumar C, Madan T, Shamji MH, Bulla R, Mitchell D, Murugaiah V, Neto MM, Temperton N, Idicula-Thomas S, Varghese PM, Kishore U. Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front Immunol 2022; 13:960733. [PMID: 35967323 PMCID: PMC9367475 DOI: 10.3389/fimmu.2022.960733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Chandan Kumar
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, India
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute and NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniel Mitchell
- WMS - Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| |
Collapse
|
5
|
Amo L, Díez-García J, Tamayo-Orbegozo E, Maruri N, Larrucea S. Podocalyxin Expressed in Antigen Presenting Cells Promotes Interaction With T Cells and Alters Centrosome Translocation to the Contact Site. Front Immunol 2022; 13:835527. [PMID: 35711462 PMCID: PMC9197222 DOI: 10.3389/fimmu.2022.835527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Podocalyxin (PODXL), a cell surface sialomucin expressed in diverse types of normal and malignant cells, mediates cellular adhesion to extracellular matrix and cell-to-cell interaction. A previous study reported the expression of PODXL protein on monocytes undergoing macrophage differentiation, yet the expression of this molecule in other antigen presenting cells (APCs) and its function in the immune system still remain undetermined. In this study, we report that PODXL is expressed in human monocyte-derived immature dendritic cells at both the mRNA and protein levels. Following dendritric cells maturation using pro-inflammatory stimuli, PODXL expression level decreased substantially. Furthermore, we found that PODXL expression is positively regulated by IL-4 through MEK/ERK and JAK3/STAT6 signaling pathways. Our results revealed a polarized distribution of PODXL during the interaction of APCs with CD4+ T cells, partially colocalizing with F-actin. Notably, PODXL overexpression in APCs promoted their interaction with CD4+ T cells and CD8+ T cells and decreased the expression of MHC-I, MHC-II, and the costimulatory molecule CD86. In addition, PODXL reduced the translocation of CD4+ T-cell centrosome toward the APC-contact site. These findings suggest a regulatory role for PODXL expressed by APCs in immune responses, thus representing a potential target for therapeutic blockade in infection and cancer.
Collapse
Affiliation(s)
- Laura Amo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier Díez-García
- Microscopy Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Natalia Maruri
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Susana Larrucea
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- *Correspondence: Susana Larrucea,
| |
Collapse
|
6
|
Rapoport EM, Moiseeva EV, Aronov DA, Khaidukov SV, Pazynina GV, Tsygankova SV, Ryzhov IM, Belyanchikov IM, Tyrtysh TV, McCullough KC, Bovin NV. Glycan-binding profile of DC-like cells. Glycoconj J 2019; 37:129-138. [DOI: 10.1007/s10719-019-09897-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/11/2023]
|
7
|
How Kaposi's sarcoma-associated herpesvirus stably transforms peripheral B cells towards lymphomagenesis. Proc Natl Acad Sci U S A 2019; 116:16519-16528. [PMID: 31363046 PMCID: PMC6697783 DOI: 10.1073/pnas.1905025116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a highly aggressive B cell lymphoma. PELs are associated with Kaposi’s sarcoma-associated herpesvirus (KSHV), and most of them are coinfected with Epstein–Barr virus (EBV). Human B cells have not previously been stably infected with KSHV in vitro. In this study, we have defined conditions to infect human B cells stably with KSHV and show that optimal infection requires coinfection by EBV. We show that a subset of these dually infected cells acquires multiple properties of PEL cells. This dual infection in vitro allows a mechanistic analysis of the contributions of EBV and KSHV to early steps in the development of PEL and underscores the desirability of targeting both viruses in developing new therapies for PEL. Primary effusion lymphomas (PELs) are causally associated with Kaposi’s sarcoma-associated herpesvirus (KSHV) and 86% of PELs are coinfected with Epstein–Barr virus (EBV). Understanding how PELs develop has been impaired by the difficulty of infecting B cells with KSHV in vitro, and the inability of KSHV to transform them. We show that EBV supports an optimal coinfection of 2.5% of peripheral B cells by KSHV. This coinfection requires 1 or more transforming genes of EBV but not entry into KSHV’s lytic cycle. We demonstrate that dually infected B cells are stably transformed in vitro and show that while both viruses can be maintained, different cells exhibit distinct, transformed properties. Transformed cells that grow to predominate in a culture express increased levels of most KSHV genes and differentially express a subset of cellular genes, as do bona fide PEL cells. These dually infected peripheral B cells are thus both stably transformed and allow in vitro molecular dissection of early steps in the progression to lymphomagenesis.
Collapse
|
8
|
Liu H, Lorenzini PA, Zhang F, Xu S, Wong MSM, Zheng J, Roca X. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 2019; 46:6069-6086. [PMID: 29771377 PMCID: PMC6159523 DOI: 10.1093/nar/gky401] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
We report the detailed transcriptomic profiles of human innate myeloid cells using RNA sequencing. Monocytes migrate from blood into infected or wounded tissue to differentiate into macrophages, and control inflammation via phagocytosis or cytokine secretion. We differentiated culture primary monocytes with either GM- or M-CSF to obtain pro- or anti-inflammatory macrophages, and respectively activated them with either LPS/IFNγ or anti-inflammatory cytokines. We also treated the THP-1 monocytic cell line with PMA and similar cytokines to mimic differentiation and activation. We detected thousands of expression and alternative-splicing changes during monocyte-to-macrophage differentiation and activation, and a net increase in exon inclusion. MBNL1 knockdown phenocopies several alternative-splicing changes and strongly impairs PMA differentiation, suggesting functional defects in monocytes from Myotonic Dystrophy patients. This study provides general insights into alternative splicing in the monocyte–macrophage lineage, whose future characterization will elucidate their contribution to immune functions, which are altered in immunodeficiencies, autoimmunity, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hongfei Liu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Paolo A Lorenzini
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School (IGS), Nanyang Technological University, 637551 Singapore
| | - Fan Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore
| | - Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Mei Su M Wong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
9
|
Yu L, Shang S, Tao R, Wang C, Zhang L, Peng H, Chen Y. High doses of recombinant mannan-binding lectin inhibit the binding of influenza A(H1N1)pdm09 virus with cells expressing DC-SIGN. APMIS 2017; 125:655-664. [PMID: 28493491 DOI: 10.1111/apm.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
The pandemic influenza A (H1N1)pdm09 virus continues to be a threat to human health. Low doses of mannan-binding lectin (MBL) (<1 μg/mL) were shown not to protect against influenza A(H1N1)pdm09 infection. However, the effect of high doses of MBL has not been investigated. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) has been proposed as an alternative receptor for influenza A(H1N1)pdm09 virus. In this study, we examined the expression of DC-SIGN on DCs as well as on acute monocytic leukemia cell line, THP-1. High doses of recombinant or human MBL inhibited binding of influenza A(H1N1)pdm09 to both these cell types in the presence of complement derived from bovine serum. Further, anti-DC-SIGN monoclonal antibody inhibited binding of influenza A(H1N1)pdm09 to both DC-SIGN-expressing DCs and THP-1 cells. This study demonstrates that high doses of MBL can inhibit binding of influenza A(H1N1)pdm09 virus to DC-SIGN-expressing cells in the presence of complement. Our results suggest that DC-SIGN may be an alternative receptor for influenza A(H1N1)pdm09 virus.
Collapse
Affiliation(s)
- Lei Yu
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Laboratory of Cancer Biology, Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqiang Shang
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Tao
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caiyun Wang
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Peng
- Department of Pediatrics, Pingxiang Maternal and Child Health Hospital, Pingxiang, China
| | - Yinghu Chen
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Harvesting pre-polarized macrophages using thermo-responsive substrates. Sci Rep 2017; 7:42495. [PMID: 28195152 PMCID: PMC5307341 DOI: 10.1038/srep42495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/11/2017] [Indexed: 11/24/2022] Open
Abstract
In the cell culture environment macrophages are highly adherent cells. Currently used methods to harvest macrophages have the disadvantage of reducing cell viability and their ability to re-attach after seeding. Although thermo-responsive surfaces have been employed to harvest cell sheets no reports are available to use these to harvest (pre-polarized) macrophages. We show that this method significantly improves the yield of living macrophages and percentage of subsequent cell reattachment, whilst having a minimal effect on the cell phenotype.
Collapse
|
11
|
PPAR-γ agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-κB pathways. Int Immunopharmacol 2016; 41:24-34. [PMID: 27792919 DOI: 10.1016/j.intimp.2016.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) is a dendritic cell-specific lectin which participates in dendritic cell (DC) trafficking, antigen uptake and DC-T cell interactions at the initiation of immune responses. This study investigated whether peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN and exploited the possible molecular mechanisms, especially focused on the signaling pathways of mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB). Here, we show that the PPAR-γ agonist pioglitazone decreased DC adhesion and transmigration, and DC stimulation of T cell proliferation mediated by DC-SIGN dependent on activation of PPAR-γ, although it increased DC endocytosis independent of PPAR-γ activation. Furthermore, PPAR-γ activation by pioglitazone in DCs down-regulated the expression of DC-SIGN, which was mediated by modulating the balance of the signaling pathways of extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB, but not p38 MAPK. Therefore, we conclude that PPAR-γ activation in human DCs regulates the immunogenicity of DCs mediated by DC-SIGN via the pathways of MAPK and NF-κB. These findings may support the important role of these mediators in the regulation of DC-mediated inflammatory and immunologic processes.
Collapse
|
12
|
Interferon-induced sterile alpha motif and histidine/aspartic acid domain-containing protein 1 expression in astrocytes and microglia is mediated by microRNA-181a. AIDS 2016; 30:2053-64. [PMID: 27219130 DOI: 10.1097/qad.0000000000001166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1), a newly discovered HIV-1 host restriction factor, has been found to be induced by interferons and to be regulated by microRNA-181a (miR-181a). However, the mechanism of interferons-induced SAMHD1 expression is unclear. DESIGN We hypothesized that interferons induce SAMHD1 expression through Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathways, which is mediated by miR-181a. METHODS We examined the effect of IFN-α and IFN-γ on SAMHD1 mRNA and protein expression, as well as the levels of phosphorylated SAMHD1 and miR-181a in astrocytes and microglia. To determine whether interferons-induced SAMHD1 expression was mediated by miR-181a, we overexpressed or inhibited miR-181a in these cells and exposed them to interferons. We also detected the effect of SAMHD1 and miR-181a on HIV-1 infection in astrocytes and microglia. RESULTS Both IFN-α and IFN-γ increased SAMHD1 mRNA and protein expression, and reduced miR-181a levels, particularly in microglia. Phosphorylated SAMHD1was not induced by interferons. Overexpression of miR-181a counteracted induction of SAMHD1 expression by interferons, and inhibition of miR-181a mimicked interferons treatment. Inhibition of JAK-STAT signaling pathways resulted in increased miR-181a levels and decreased SAMHD1 mRNA expression. Knock-down of SAMHD1 or overexpression of miR-181a enhanced HIV-1 infection, whereas inhibition of miR-181a reduced HIV-1 infection. However, inhibition of HIV-1 infection induced by IFN-α was not significantly affected by miR-181a and SAMHD1. CONCLUSION MiR-181a is an important mediator for interferons-induced SAMHD1 expression in astrocytes and microglia, but not for inhibition of HIV-1 infection induced by IFN-α.
Collapse
|
13
|
Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P. Arnica montana effects on gene expression in a human macrophage cell line. Evaluation by quantitative Real-Time PCR. HOMEOPATHY 2016; 105:131-47. [PMID: 27211321 DOI: 10.1016/j.homp.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arnica montana is a popular traditional remedy widely used in complementary medicine, also for its wound healing properties. Despite its acknowledged action in clinical settings at various doses, the molecular aspects relating to how A. montana promotes wound healing remain to be elucidated. To fill this gap, we evaluated the whole plant extract, in a wide range of dilutions, in THP-1 human cells, differentiated into mature macrophages and into an alternative IL-4-activated phenotype involved in tissue remodelling and healing. METHODS Real-time quantitative Reverse Transcription Polymerase Chain Reaction (PCR) analysis was used to study the changes in the expression of a customized panel of key genes, mainly cytokines, receptors and transcription factors. RESULTS On macrophages differentiated towards the wound healing phenotype, A. montana affected the expression of several genes. In particular CXC chemokine ligand 1 (CXCL1), coding for an chief chemokine, exhibited the most consistent increase of expression, while also CXC chemokine ligand 2 (CXCL2), Interleukin8 (IL8) and bone morphogenetic protein (BMP2) were slightly up-regulated, suggesting a positive influence of A. montana on neutrophil recruitment and on angiogenesis. MMP1, coding for a metalloproteinase capable of cleaving extracellular matrix substrates, was down-regulated. Most results showed non-linearity of the dose-effect relationship. CONCLUSIONS This exploratory study provides new insights into the cellular and molecular mechanisms of action of A. montana as a promoter of healing, since some of the genes it modifies are key regulators of tissue remodelling, inflammation and chemotaxis.
Collapse
Affiliation(s)
- Debora Olioso
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Maurizio Brizzi
- Department of Statistical Sciences, University of Bologna, Via delle Belle Arti 41, 40126 Bologna, Italy
| | - Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
14
|
Colorectal cancer cell-derived interleukin-6 enhances the phagocytic capacity and migration of THP-1 cells. Cytokine 2016; 79:82-9. [DOI: 10.1016/j.cyto.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
|
15
|
Jin C, Li J, Cheng L, Liu F, Wu N. Gp120 binding with DC-SIGN induces reactivation of HIV-1 provirus via the NF-κB signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2016; 48:275-81. [PMID: 26837416 DOI: 10.1093/abbs/gmv138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 11/14/2022] Open
Abstract
The reactivation mechanism of latent human immunodeficiency virus type 1 (HIV-1) infection is unclear, especially in dendritic cells (DC). DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds with HIV-1 and other pathogens to activate the extracellular regulated protein kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways and regulate cytokine expression. We hypothesized that DC-SIGN-induced signaling pathways may activate HIV-1 provirus. To investigate this hypothesis, we generated a model by transfecting 293T cells with a DC-SIGN expression plasmid and an HIV-1 5' long terminal repeat (LTR) reporter plasmid, and then stimulated the 293T cells with HIV-1 gp120 protein, wild-type HIV-1 or VSV-G-pNL4.3 pseudotype virus (without gp120 protein). It was found that the HIV-1 5'LTR was reactivated by HIV-1 gp120 in DC-SIGN-expressing 293T cells. Then the HIV-1 chronically infected CEM-Bru cells were transfected with DC-SIGN expression plasmid and stimulated by HIV-1 gp120 protein. It was found that early and late HIV-1 provirus replication was reactivated by the HIV-1 gp120/DC-SIGN stimulation. We then investigated the involvement of the ERK, p38 mitogen-activated protein kinases and NF-κB signaling pathways in HIV-1 gp120/DC-SIGN-induced activation of HIV-1 provirus by inhibiting the pathways specifically. Our results indicated that HIV-1 gp120/DC-SIGN stimulation reactivates latent HIV-1 provirus via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Li
- Department of Infectious Disease, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
16
|
Mediouni S, Marcondes MCG, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 2015; 6:1164. [PMID: 26557111 PMCID: PMC4615951 DOI: 10.3389/fmicb.2015.01164] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| | | | - Courtney Miller
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA ; Department of Neuroscience, The Scripps Research Institute , Jupiter, FL, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida , Gainesville, FL, USA
| | - Susana T Valente
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
17
|
Jiménez-Garcia L, Herránz S, Luque A, Hortelano S. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages. Eur J Immunol 2014; 45:273-86. [DOI: 10.1002/eji.201444806] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/28/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lidia Jiménez-Garcia
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Sandra Herránz
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Alfonso Luque
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
18
|
Yanagihara S, Goto H, Hirota T, Fukuda S, Ohno H, Yamamoto N. Lactobacillus acidophilus L-92 Cells Activate Expression of Immunomodulatory Genes in THP-1 Cells. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2014; 33:157-64. [PMID: 25379363 PMCID: PMC4219982 DOI: 10.12938/bmfh.33.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
To understand the immunomodulatory effects of Lactobacillus acidophilus L-92 cells suggested from our previous
study of in vivo anti-allergy and anti-virus effects, host immune responses in macrophage-like THP-1 cells after
4 h (the early phase) and 24 h (the late phase) of cocultivation with L-92 cells were investigated by transcriptome analysis. In
the early phase of L-92 treatment, various transcription regulator genes, such as, NFkB1, NFkB2, JUN, HIVEP2 and
RELB, and genes encoding chemokines and cytokines, such as CCL4, CXCL11, CCL3 and
TNF, were upregulated. Two transmembrane receptor genes, TLR7 and ICAM1, were
also upregulated in the early phase of treatment. In contrast, many transmembrane receptor genes, such as IL7R, CD80,
CRLF2, CD86, CD5, HLA-DQA1, IL2RA, IL15RA and CSF2RA, and some cytokine genes, including IL6,
IL23A and CCL22, were significantly upregulated in the late phase after L-92 exposure. Some genes
encoding cytokines, such as IL1A, IL1B and IL8, and the enzyme IDO1 were
upregulated at both the early and the late phases of treatment. These results suggest that probiotic L-92 might promote Th1 and
regulatory T-cell responses by activation of the MAPK signaling pathway, followed by the NOD-like receptor signaling pathway in
THP-1 cells.
Collapse
Affiliation(s)
- Sae Yanagihara
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Hiroaki Goto
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Tatsuhiko Hirota
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Shinji Fukuda
- Intestinal Microbe Symbiosis Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ; Laboratory for Intestinal Ecosystem, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan ; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan ; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Hiroshi Ohno
- Intestinal Microbe Symbiosis Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ; Laboratory for Intestinal Ecosystem, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan ; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Naoyuki Yamamoto
- Intestinal Microbe Symbiosis Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ; Research and Development Planning Department, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| |
Collapse
|
19
|
Paccosi S, Musilli C, Caporale R, Gelli AMG, Guasti D, Clemente AM, Torcia MG, Filippelli A, Romagnoli P, Parenti A. Stimulatory interactions between human coronary smooth muscle cells and dendritic cells. PLoS One 2014; 9:e99652. [PMID: 24932497 PMCID: PMC4059651 DOI: 10.1371/journal.pone.0099652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023] Open
Abstract
Despite inflammatory and immune mechanisms participating to atherogenesis and dendritic cells (DCs) driving immune and non-immune tissue injury response, the interactions between DCs and vascular smooth muscle cells (VSMCs) possibly relevant to vascular pathology including atherogenesis are still unclear. To address this issue, immature DCs (iDCs) generated from CD14+ cells isolated from healthy donors were matured either with cytokines (mDCs), or co-cultured (ccDCs) with human coronary artery VSMCs (CASMCs) using transwell chambers. Co-culture induced DC immunophenotypical and functional maturation similar to cytokines, as demonstrated by flow cytometry and mixed lymphocyte reaction. In turn, factors from mDCs and ccDCs induced CASMC migration. MCP-1 and TNFα, secreted from DCs, and IL-6 and MCP-1, secreted from CASMCs, were primarily involved. mDCs adhesion to CASMCs was enhanced by CASMC pre-treatment with IFNγ and TNFα ICAM-1 and VCAM-1 were involved, since the expression of specific mRNAs for these molecules increased and adhesion was inhibited by neutralizing antibodies to the counter-receptors CD11c and CD18. Adhesion was also inhibited by CASMC pre-treatment with the HMG-CoA-reductase inhibitor atorvastatin and the PPARγ agonist rosiglitazone, which suggests a further mechanism for the anti-inflammatory action of these drugs. Adhesion of DCs to VSMCs was shown also in vivo in rat carotid 7 to 21 days after crush and incision injury. The findings indicate that DCs and VSMCs can interact with reciprocal stimulation, possibly leading to perpetuate inflammation and vascular wall remodelling, and that the interaction is enhanced by a cytokine-rich inflammatory environment and down-regulated by HMGCoA-reductase inhibitors and PPARγ agonists.
Collapse
Affiliation(s)
- Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Claudia Musilli
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Roberto Caporale
- Central Laboratory, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ann Maria Clemente
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Amelia Filippelli
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Paolo Romagnoli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|